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Abstract

An in-depth analysis of the 80x86 processor fam-

ilies identi�es architectural properties that may have

unexpected, and undesirable, results in secure com-

puter systems. In addition, reported implementation

errors in some processor versions render them unde-

sirable for secure systems because of potential security

and reliability problems. In this paper, we discuss the

imbalance in scrutiny for hardware protection mecha-

nisms relative to software, and why this imbalance is

increasingly di�cult to justify as hardware complexity

increases. We illustrate this di�culty with examples

of architectural subtleties and reported implementation

errors.

1 Introduction

This paper reports on the progress of an in-depth

analysis project covering the 80x86

1

families of pro-

cessors. This includes the Intel 386, Intel 486, and

Intel Pentium

2

processors, as well as their compati-

ble brethren developed by AMD, Cyrix, NexGen, etc.

The analysis is based entirely on publicly available ma-

terials and tests developed for the project.

This analysis is being performed under the aus-

pices of the National Security Agency's Trusted Prod-

uct Evaluation Program (TPEP). Because the pre-

�
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xford Systems participated in this study under contract

to The Aerospace Corporation.

1

The \ 0x " designation in this paper means, roughly,

\ 03 or better." The 0 family is not included because

it has no security mechanisms. Although the 0 includes

some of the same security mechanisms as later processors, it

is not included because its architecture is signi cantly di erent

and it is not being used for new product development.

ntel 3 , ntel 4 , and Pentium are trademarks of ntel

Corporation. All other trademarks are the property of their

respective owners.

ponderance of products in or being considered for

TPEP evaluation use 80x86 processors (particularly

high-assurance products), the intent is to provide a

common base of analysis that can be used by evalua-

tion teams for di erent products incorporating these

processors.

Traditionally, computer security evaluations have

devoted little attention to hardware. Section ex-

plores this approach of implicitly trusting a system's

hardware layer with minimal analysis, and why the in-

creasing complexity of modern microprocessors ma es

this practice untenable.

The initial stage of the analysis focused on aspects

of the architecture that may present pitfalls for secure

system designers. Although we found no gross secu-

rity aws \re uired by the speci cation," we identi ed

several features that, if not properly managed, intro-

duce previously unreported covert channels and other

subtle problems. These results were surprising; we did

not expect well-de ned architectural features to cause

undesirable security behavior. In retrospect, however,

the very complexity of the architecture suggests that

it was bound to include some unexpected feature in-

teractions. These problems are discussed in section 3.

In addition, we collected numerous reports of im-

plementation errors claimed to exist in some proces-

sor versions. These are summari ed in section 4. Al-

though we were aware of a few widely-publici ed com-

putational errors in some versions (e.g., incorrect re-

sults for 3 -bit multiplications), we were surprised to

learn of so many distinct and varied reported imple-

mentation errors. Because some of these errors could

introduce an exploitable security aw into a secure sys-

The term \hardware" in this paper refers both to hard-

ware and rmware, as they are inseparable for modern

microprocessors.

The recent publicity surrounding the oating point divide

problem in Pentium processors came after the work reported

by this paper, but is certainly now the foremost example of a

well-publicized (although not security-relevant) processor im-

plementation aw.



tem, it is important that they not be overloo ed during

a security evaluation. Although the problems appear

to be xed in subse uent versions of each processor,

it is not clear whether the dearth of reported aws

in more modern processors (e.g., Intel 486, Pentium,

non-Intel implementations) represents actual improve-

ment in implementations, the predictable lag between

product introduction and problem reports, or simply

lesser e orts in ma ing such information available.

The long-term goal of the analysis project is the

development of a test suite to exercise 80x86 security

features and search for additional aws. Essentially,

we are performing an architecture study of the 80x86

protection mechanisms and a penetration testing ef-

fort. Sections and 6 review related wor and discuss

our plans.

c round

A high-assurance secure computing system (such

as one intended to satisfy the re uirements of the

Trusted Computer System Evaluation Criteria (TC-

SEC) Ncsc8 at B or above) must be able to enforce

security policies correctly and reliably, even while un-

der hostile attac . uture versions of the system|

developed in accordance with appropriate con gura-

tion management procedures|must continue to en-

force those policies reliably. Moreover, the protec-

tion mechanisms that support these properties must

be carefully structured and well-de ned for evaluation

purposes. These fundamental aspects of secure sys-

tems form the basis for design, development, criteria,

and evaluation worldwide.

In general, however, much more e ort is applied

to assurance for a system's software components than

for hardware components. Designers and evaluators

tend to concentrate on the Trusted Computing Base

(TCB) software (e.g., the operating system); hard-

ware is assumed to operate securely if used correctly

(this assumption is often implicit; Gutt 0 points out

the need to verify such assumptions). Any hardware-

related e ort is primarily to ensure that software

ma es correct use of documented hardware features.

This imbalance in the depth of hardware versus soft-

ware analysis has been satisfactory in the past, but

is increasingly di cult to justify.

. r st st ar ar -

c s

Although software may receive greater attention,

hardware components are clearly critical to a system's

security. Indeed (but for a few speciali ed exceptions),

all hardware components are part of a system's TCB,

and the hardware security mechanisms are an integral

part of the eference alidation Mechanism ( M).

At least, satisfactory to the extent that most known secu-

rity exposures involve aws in software rather than hardware.

owever, it is unclear that this situation results from an actual

absence of hardware aws; other factors may be at work.

Generally the Central Processing nit (CP ) is

most important. This component, which may include

a distinct Memory Management nit (MM ), I

processor, and or other functional units, is respon-

sible for isolating the TCB from untrusted subjects,

and subjects from each other. This may involve mech-

anisms such as user supervisor state or rings, address

space separation, segmentation and segment protec-

tion, page protection, I device or address protec-

tion, etc. These mechanisms are fundamental to secu-

rity enforcement|without them, the rest of the TCB

could not maintain security.

In addition, the CP is trusted to be functionally

correct; that is, to perform correct computations on

behalf of the TCB software. If the CP operates in-

correctly, the TCB software may fail unpredictably.

owever, such failures are less li ely to introduce an

exploitable security aw, and more li ely to introduce

computational errors that will cause non-TCB soft-

ware to noticeably malfunction.

ther hardware components|memory, dis s,

tapes, other peripherals|are also trusted to function

correctly in order for the TCB software to operate. Be-

cause such components rarely contain security mecha-

nisms, their incorrect operation is similarly less li ely

to introduce an exploitable aw and more li ely be

noticed.

. a at ar ar Ass ra c

hat is the reason for the traditional focus on soft-

ware assurance in trusted systems There are several.

oremost, perhaps, is that this traditional approach

\appears to wor ." There are many well-documented

examples of security aws due to software errors, but

few for hardware and 4 .

Another reason is that, as developers and evalua-

tors, we concentrate on what we understand and can

a ect. ardware is typically presented as a blac box,

a \given," on which a secure system must be built.

This hardware is often procured from a third party

with no incentive (or capability) to provide any details

about its implementation. In contrast with the mal-

leable nature of software, hardware cannot be modi ed

easily, and often not at all. urthermore, modifying

and assessing hardware components re uires di erent

nowledge and s ills than for software; these are rarely

found together.

Although comfort and familiarity are di cult to

justify scienti cally, a third reason is on rmer ground:

relative complexity and reliability of software versus

hardware. In general, the visible interface to a sys-

tem's hardware components (such as a CP ) is much

simpler than the trusted software interface. Because

the interface is simpler, it is easier to test thoroughly,

and given the speed of hardware operations, far more

testing is possible. ardware design is a more sys-

tematic and disciplined process than software design,

owever, data dependencies in peripherals, or undocu-

mented commands where a low-level interface is ex-

posed to untrusted sub ects, can introduce serious aws.



contributing to reliability and general correctness (al-

though there is less focus on isolation of security func-

tions in hardware than for secure software). Together,

these properties all contribute to a real distinction in

the way that hardware assurance is provided.

nfortunately, simple interfaces do not necessarily

correspond to simple implementations. In software,

complexity is considered a prime breeding ground for

aws; the same seems li ely for hardware. ow-

ever, limited visibility into hardware implementations

ma es it more di cult to judge hardware complex-

ity. urthermore, because hardware components are

often designed with an incomplete (or absent) under-

standing of security issues, the result may be poorly

matched to the needs of a secure system.

. cr r c ss r Ass ra c

The microprocessor has changed the way trusted

systems are built. In the 0's, trusted systems

were typically built entirely by one company: the

same organi ation, although not necessarily the same

people, produced both hardware and software com-

ponents. Most hardware implementations were rela-

tively simple|complex hardware was extremely costly

to design and build. Security-relevant dependencies

between hardware and software components could be

addressed within the con nes of a single organi ation.

Analysis of, documentation for, or assurance about

hardware components could be provided within the

organi ation as re uired.

In the 80's, this began to change: increasingly,

hardware components became commodities, and or-

gani ations that had previously built their own pro-

cessors and peripherals started to ac uire those com-

ponents from external sources over which they had

relatively little in uence. ortunately, at least from

an assurance perspective, trusted system development

lagged this trend, and continued to rely either on pro-

prietary hardware or on relatively simple commodity

hardware.

In the 0's, however, simplicity of hardware com-

ponents is no longer a given. Processors in partic-

ular have become far more complex and less expen-

sive, and trusted systems are migrating to those plat-

forms. In particular, the architectural security fea-

tures of the 80x86 processors and the prevalence of the

80x86-based PC-compatible architecture as a develop-

ment and delivery platform has led many developers

to target that environment. Table shows all prod-

ucts available in mid- 4 that have been evaluated

for TCSEC class B or better by the NSA's TPEP

program.

f those, all but TS- 00 is hosted on an 80x86 ar-

chitecture; however, its follow-on product, TS-300, is

claimed to be targeted for B3 evaluation and runs only

on 80x86 platforms. Additionally, Trusted Informa-

tion Systems (TIS) claims its Trusted Mach Sebe 4

project is targeted for B3 evaluation and employs the

Intel 486 as its reference platform, and there are sev-

eral products in development that also depend on

these processors, including several targeted for B or

below. Clearly, the 80x86 is the processor of choice

for trusted systems in the 0's|and if we were to

include the list of systems accredited for multi-level

operation, this list would expand signi cantly.

nfortunately, this hardware cannot safely be dis-

missed as \simple" or not in need of in-depth anal-

ysis. A relatively simple interface can hide vast im-

plementation complexities|and the 80x86 interface is

far from simple. or example, the Pentium contains

approximately 3. million transistors Int 4 . Its in-

struction processing and pipeline architecture are ex-

tremely complex. The popularity of these processors

also raises the concern that a aw a ecting one trusted

system could easily a ect others.

. .

Typically, software developers provide assurance by

using top-down, modular design, minimi ing complex-

ity, structuring the development process, and docu-

menting the design and implementation. Similarly,

evaluators assess assurance by examination of the im-

plementation and of the development evidence and

documentation. These techni ues correspond directly

to modern software engineering practice, and involve

information that is readily understood by both devel-

opers and evaluators.

nfortunately, these techni ues do not apply well

to hardware. The rst problem is that details of hard-

ware design, structure, documentation, and so forth

are generally not available to evaluators|if, indeed,

they exist at all. Even in the mainframe era, this in-

formation was di cult to obtain within the con nes of

a single organi ation. or modern microprocessors, it

is e ectively impossible|the processor supplier is of-

ten unrelated to the system developer, and in any case

considers the design details extremely proprietary. Al-

though in-depth accurate hardware design documen-

tation is more li ely to exist today, it is simply not

available in the context of a trusted system evalua-

tion.

The second problem is that, even if hardware de-

sign documentation were available, it would be of lim-

ited utility to developers and evaluators whose s ills

lie largely in the software world. Although for simple

processors a software-oriented evaluator may be able

to perform an informal assessment of hardware secu-

rity (see section . ), it is impractical to gain the same

degree of understanding as one would for software. or

the complex implementations of today's microproces-

sors the situation is much more di cult.

ormal assurance methods represent another ap-

proach; this is discussed further in section .3.

. .

The other primary techni ue for gaining assurance is

testing. ardware components support testing bet-



Boeing M S AN
A 80x86 multiprocessor

Gemini Trusted Networ Processor
A 80x86 PC or multiprocessor

SI TS- 00
B3 Bull DPS-6 (proprietary)

erdix S AN
B 80x86 custom board

TIS Trusted enix
B 80x86 PC

Table :

ter than software, so this is relatively more e ective.

Testing, however, must be directed. It is a common

fallacy that the exposure of a system to \millions of

users" ensures that it is secure. In fact, this techni ue

is of limited value, even for ensuring that a system is

reliable|user acceptance may instead re ect a toler-

ance of failure, and is in any case relevant primarily

to the most heavily-used features of the system.

The more subtle problem with exposure testing for

security is that security is the absence of undesired

behavior. During normal system operation, a user is

li ely to notice when a function does not behave as ad-

vertised, because application programs use those func-

tions. ne is much less li ely to notice that a security

policy has not been enforced. A correctly operating

application program simply will not attempt opera-

tions that the security policies would prohibit|there

can be no meaningful dependency on such operations.

Thus, the exposure of the 80x86 processors to millions

of PC users tells us little about the soundness of their

security mechanisms.

Not all PC users even use the protection mecha-

nisms (MS-D S users do not). f those who do, the

vast majority do not depend on the mechanisms to

enforce security policy. f that tiny minority that do

expect security enforcement, few run hostile programs

that would attempt operations that the hardware se-

curity mechanisms would prevent. Directed testing of

the protection mechanisms seems essential, regardless

of the total si e of the user base.

hile directed testing is clearly necessary, it too

must contend with problems such as undocumented

features. A processor with undocumented security-

relevant features can undermine the TCB software's

best e orts at policy enforcement. Although it is rel-

atively easy to analy e software to determine all the

functions it can perform, without visibility into the

implementation, this is very di cult for a hardware

component|and testing is not an e ective substitute.

The Pentiumprocessor brings a new aspect to this problem

it incorporates some functions that are undocumented.

These are described in an \Appendix " to ntP that is avail-

able only under strict non-disclosure protection. t is claimed

in ntP that these functions only provide optimizations for

certain TC software operations, although without documen-

tation, they cannot be fully analyzed for architectural pitfalls.

rc it ctur it

This section describes several pitfalls in using the

80x86 architecture to build secure systems. These

result from apparent design oversights and or unex-

pected interactions among processor features. In some

cases, performance optimi ations provide unexpected

avenues for information ow.

The 80x86 architecture includes many mechanisms

for constructing secure systems:

Multiple operating modes: Protected, irtual-

8086, eal, System Management Mode (SMM)

Segment protection: Descriptors, Program and

Segment Privilege evels (P ), Access Modes

Special segments: Gates, etc.

Multitas ing: Tas State Segments (TSSs), Tas

Switching

Paging: Address Space Management, Per-page

Protection

I protection: I Instructions, I Permission

Bitmap

Miscellaneous: Control lags, Debug egisters,

CP Identi cation, etc.

The details of these mechanisms can be found in

Int386, Int486, IntP .

The pitfalls discussed here apply only to features

(such as the unprivileged instruction set) that are di-

rectly visible to unprivileged programs, or that a TCB

might virtuali e to ma e indirectly available (such as

the debugging registers). eatures that would neces-

sarily be used solely by the TCB (such as page tables)

are not addressed, since those resources must be en-

tirely in the TCB's control.

Some pitfalls represent covert channels: they per-

mit one subject (process) to perform an operation that

is detectable by another subject, in a way that could

violate a system's rules for information ow. These are

particularly interesting because some were discovered

during the course of a high assurance TPEP evalua-

tion, and may be applicable to other products. ortu-

nately, countermeasures were found to close the ows.



They were not previously detected because the rel-

evant processor features were not represented in the

system speci cations. The others are simply features

whose rules for safe use are more subtle than might be

expected from an initial study of the architecture.

. a r at

The 80x86 processors have a logically distinct

loating Point nit ( P ) with its own register set

and context. Because not all programs need or use

the P , it would be ine cient to save and restore

the P contents at every tas switch. Therefore,

there is a mechanism to help minimi e P saves and

restores: the Tas Switched (TS) ag.

The TS ag wor s as follows: whenever a pro-

gram executes a P instruction, if the TS ag is

set, a hardware-detected exception occurs, invo ing

the TCB. The TCB then has an opportunity to see

whether the current process is the one that was last

using the P . If so, it clears the TS ag and restarts

the instruction immediately. If not, it must save the

P context, re-load the P from the current pro-

cess's P context, then clear the TS ag and restart

the instruction. The TS ag is set automatically by

the hardware whenever a tas switch (i.e., loading the

processor state for some process) occurs.

This would be ne except that the TS ag is vis-

ible outside the TCB. Although it is located in a re-

stricted control register, an unprivileged instruction

(Store Machine Status ord, ) ma es the TS ag

visible. The following scenario illustrates how the TS

ag could be used as a signaling mechanism, and ap-

plies to all 80x86 processors (as well as the 80 86).

igure illustrates one example signaling scenario

that could transmit a binary signal (other more e -

cient forms of this ow exist as well). The scenario

assumes that the sender S and receiver share a sin-

gle processor, with no other processes active on the

processor. It is also assumed that a mechanism exists

allowing S to sleep for a speci ed period of time, and

preempt when this period is completed.

begins the cycle by executing a P instruc-

tion, clearing the TS ag.

enters a loop for iterations. During this pe-

riod, no swapping occurs and the TS ag remains

clear.

pon completion of the loop, polls the TS ag

using , and determines that no preemption

occurred. A clear TS ag indicates the sender

has transmitted a \0".

S begins the cycle by re uesting an interrupt to

awa en it M cloc tic s from now. M is calculated

such that the sender will be awa ened during 's

( -N) loop iteration.

then executes a P instruction, clearing the

TS ag.

enters a loop for iterations.

( -N) iterations into 's loop, the interrupt oc-

curs, causing S to be awa ened. pon exchanging

S for , the tas switch sets the TS ag.

S immediately sleeps, allowing to swap bac

in. At this point, is unaware that it had been

pre-empted.

pon completing the loop, polls the TS ag. A

set TS ag indicates the sender has transmitted

a \ ".

Although a TCB-provided timer facility is assumed

for the example, this is not a necessary aspect of the

channel. or instance, in a multiprocessor system, the

real sender S, running on processor A, could simply

send interrupts or IPC messages to its proxy S that

is sharing processor B with , causing S to wa e up

(and thus tas switch) or not.

ne di culty in attempting to detect this ow with

a ormal Top- evel Speci cation ( T S) and or code

analysis is that the setting of the TS ag occurs inter-

nally to the processor. This state change is thus often

omitted from analysis as an implementation detail|

which has indeed been observed in one case.

Interestingly, beginning with the i386, Intel moved

the TS ag into the privileged C 0 register (it had

previously been located in the 80 86 Machine Sta-

tus ord, which was removed in the i386). Intel

recommends against further use of the instruc-

tion, and instead recommends use of the privileged

instruction. nfortunately, compatibility with old

(80 86-based) programs re uires that , and thus

the value of the TS ag, remain available to unprivi-

leged programs.

. t t a

The previous scenario illustrates an information

ow based on visibility of the TS ag with . ow-

ever, even if the TS ag were not visible, its state

could potentially be sensed by the duration of a P

instruction. If the TS ag is set, an exception will

occur and be handled by the TCB before the P

instruction completes. This is li ely to ta e consider-

ably longer than if the TS ag were clear. This delay

can be observed as greater execution time for the P

instruction.

Additionally, the Intel scheme for handling numeric

exception errors is to handle the error in the context of

the next P instruction, regardless of which process

executes the next instruction. Thus if process S per-

forms an erroneous P instruction and immediately



To Signal 

To Signal 

1

0

FPU instr
R: loop 21 R: exec SMSW

TS = 0

X3
X iterations

TS = 0

R: exec 

Interrupt received 

3

TS = 1

R: exec SMSWXS: sleepsS: woken

TS = 1TS = 0

R: exec R: loop 21
X iterationsFPU instr continues loopby interrupt

after (X-N) th iteration

R: woken,

igure :

swaps out, process can sense this by performing

a P instruction and observing the delay from the

P context swap, plus the delay from handling the

numeric exception.

undamentally, these ows are caused by the P

context-saving optimi ation itself, not by visibility of

the TS ag. Thus, a full remedy re uires ma ing the

TS ag's e ects, as well as its value, invisible to un-

privileged programs.

. t Acc ss t

The \accessed" bit in a segment descriptor is visi-

ble through the oad Access ights ( ) instruction.

This bit is set whenever the segment's contents are

accessed, and is reset only by TCB software.

If two processes share access to a segment descrip-

tor (for instance, a read-only data segment in the

Global Descriptor Table (GDT)), a sending process

can read from the segment and in doing so, signal to

a receiving process that is waiting for the accessed bit

to change. In practice, this is unli ely to be a serious

problem because the bit, once set, could be reset only

by TCB software, and because the number of possible

GDT entries is xed. owever, it is clearly a ow:

an operation (performed by the sender) whose seman-

tics clearly imply \read" actually performs a \write,"

and the result of that \write" is visible to the receiver

without restriction.

A simple countermeasure is to ensure that the \ac-

cessed" bit of each descriptor is set when the descrip-

tor is created. This, however, would e ectively disable

the feature, and render it unavailable to the TCB for

use in segment management.

. t r t Attr b t s

A similar situation to the segment-accessed bit ex-

ists for other segment attributes. There is an \avail-

able for software" bit that is also visible with , as

well as a \present" bit; the TCB's use of those bits

must be designed to avoid possible ows. Another

attribute (segment limit) is also visible through an in-

struction ( oad Segment imit, ), and could be

used to determine whether a segment had been ex-

tended by a reference beyond its earlier limit. A third

potential problem comes from access rights them-

selves, visible both with and the access-chec ing

instructions E ify ead ( ) and E ify rite

( ): if a system uses access rights to implement de-

mand segmentation, a program can determine whether

a segment is actually writable. This could yield dif-

ferent results when chec ing writability than when at-

tempting a write, as the latter would be made to wor

by the system's fault handler.

As with segment-accessed, none of these appear to

present great ris , and they seem unli ely to be ex-

ploitable in real systems. owever, they are examples

of a design that is problematic for security in that it

ma es visible real attributes that should be virtual-

i able by a TCB. Because the applicable instructions

are available without restriction (except for the tar-

get segment's P ), the TCB has no e ective means of

controlling their use, and must instead be designed to

eliminate their potential misuse.

The e ect of these instructions is subtle: although

it is clear that the Page Directory Table and GDT

themselves must be protected, it is not as obvious that

the parts of descriptors that can be read (but not mod-

i ed) through these instructions can present a security

problem.



. a Acc ss s b t

The attribute-visibility pitfalls appear only at the

segment level: there are no corresponding operations

for interrogating page attributes, so page management

can be truly invisible outside the TCB.

nfortunately, this means that, based on segment

attributes, the access-chec ing instructions ( and

) can report that an address is readable (or

writable) when it actually is not. A TCB that relies on

page-level protection to enforce access control cannot

use and to validate parameter addresses|

even though a segment may be accessible, pages may

be individually protected. These two instructions were

provided to help S developers avoid access problems

caused by invalid parameter addresses. nfortunately,

they are unreliable for systems using page-level protec-

tion, because they could lead the TCB to conclude,

incorrectly (and insecurely), that its caller has appro-

priate access to a protected page.

. t r a st r s b t

Several internal registers (those designating the

local, global and interrupt descriptor tables; DT,

GDT, and IDT respectively) are visible with unpriv-

ileged instructions. A program can issue the (Store

DT , ) instruction to determine the current lo-

cation of its DT. If DTs are ever moved or reas-

signed, perhaps in response to contention caused by

other subjects, ma es such changes visible, thus

creating a potential information ow. Because the

GDT and IDT are system-wide tables, their locations

are less li ely to be useful for covert channels.

i e segment attributes, the DT represents in-

formation that should be virtuali able by the TCB|

or simply not accessible at all. Because the in-

struction is unprivileged, the TCB must be designed

to preclude use of the DT as a covert channel.

. b st r a s

Because the Debug egisters (D s) provide a pow-

erful facility for program debugging, a general-purpose

system may ma e them visible to unprivileged sub-

jects. The D s are accessible only at P 0, so they

must be virtuali ed and ept as part of a process's

context. owever, this is not su cient protection: the

values set in D s must also be validated by the TCB

to eliminate the potential for interference with TCB

operation.

The brea point addresses are linear addresses, and

so must be calculated by the TCB relative to the pro-

cess's segments. The control values must be validated

to avoid introducing unde ned values into the D s, or

n a system that relies on paging and page protection for

all its separation, and provides a sub ect with one code and one

data segment covering the entire linear address space, the break-

point address need not be translated however, it still must be

validated to ensure that it does not permit breakpoints to be

set for TC addresses.

setting values in unde ned D elds. In practice, this

should not be di cult.

. ta t r

The Pentium processors support a time stamp

counter (TSC) register that provides a count of ma-

chine cycles since the processor was reset. This al-

lows extremely high-resolution timing of program ac-

tivity and is useful for performance measurement and

real-time programs. Although this is not fully docu-

mented in non-proprietary parts of IntP , that man-

ual contains su cient hints to determine how to un-

derstand the feature and ma e it available. In addi-

tion, anG 4 provides a more detailed description.

igh-resolution timing, however, is also the ey to

e cient exploitation of covert timing channels u .

ortunately, the Pentiumhas a control ag that ma es

the ead TSC ( ) instruction privileged; by ma -

ing privileged, a TCB can virtuali e the TSC

to reduce its e ectiveness for covert channels. As with

any high-resolution cloc , the TSC must be either vir-

tuali ed or eliminated entirely to reduce the covert

channel threat.

. r r a c t rs

The Pentium has a set of Model-Speci c egisters

(MS s), most of which are unde ned in IntP . They

are, however, de ned to be accessible only at P 0,

reserving them to the TCB.

ecently, descriptions of some of these registers

have been published Math 4 , based on analysis of

an Intel-developed performance monitoring pac age.

These MS s count internal processor events, such as

cache misses, pipeline activity, etc., and can be used

for characteri ing program performance.

Although they are not directly accessible outside

P 0, a TCB could (because they are useful to appli-

cation programmers) provide virtual access to these

MS s. As with the TSC, however, this re uires care

to reduce the threat from covert channels. nli e the

TSC, which measures an external cloc , some perfor-

mance MS s can measure e ects of other concurrent

activities (e.g., cache snoops by another processor)

or of previous activities (e.g., cache hits and misses

due to cache activity by a previous subject). Earlier

wor ray has shown how to exploit such mecha-

nisms based on measurement against a time reference,

but MS s provide a direct indication.

. ac a a s

As mentioned in the preceding scenario, caches

present potential for covert timing channels. Even

without MS s for direct measurements of cache ac-

tivity, cache hits and misses can be detected strictly

from instruction timing, as described in ray . To

eliminate these ows, caches must be managed. This

can reduce their e ciency considerably, depending on

cache architecture, as it introduces otherwise unnec-

essary cache ush and invalidation activity.



The Intel 486 and later processors include caches

for data and instructions, as do some of the non-Intel

80386-family processors. In addition, all 80x86 proces-

sors have a Translation oo aside Bu er (T B) that,

although smaller than the data caches, has potential

for use as a covert timing channel.

. a s

Most 80x86 computational instructions are de ned

explicitly to return \unde ned" values for arithmetic

ags, presumably to aid implementation optimi a-

tions. Although it seems extremely li ely that the

actual values of the ags are derived deterministically

from legitimately accessible information, the archi-

tecture does not re uire it, and it is conceivable that

they might represent the results of some processor ac-

tivity performed by a previous subject and thus usable

as a covert storage channel.

A few unprivileged instructions (for example, )

return values in which some bits are explicitly unde-

ned. Again, it seems extremely li ely that those bits

are derived from legitimately accessible information,

but that is not re uired by the speci cation.

ort d I nt tion rror

The 80x86 processors, particularly the early ver-

sions of the Intel 386 and Intel 486, have had a his-

tory of implementation errors reported in the com-

puter trade press. ne such widely reported error

involved incorrect results from 3 -bit multiplication

with certain operand values in some Intel 386 \B

step" processors; Intel actually undertoo additional

testing and, until the problem was xed, provided

specially-mar ed versions of these processors in which

the error did not occur. An even more widely reported

processor error, the Pentium aw, led to the re-

placement of faulty processors and may lead to signif-

icant changes in how such errors are handled in the

future.

All of these widely-reported aws seemed to involve

errors that, while they might cause an application pro-

gram or possibly a TCB operation to operate incor-

rectly, did not appear to translate into exploitable

security aws. A more in-depth search for reported

aws, however, turned up some that clearly did in-

volve the security architecture, as well as numerous

others that did not.

These reports also suggest several general proper-

ties of aws:

. It ta es a while for any aw reports to become

public. This appears at least partly due to the

understandable reluctance of system and pro-

cessor manufacturers to announce aws in their

There is a parallel here to arg74 , in which an undocu-

mented instruction was discovered on the E- 4 that accessed

an internal processor register of no apparent signi cance.

products.

1

ccasional user reports of applica-

tion malfunctions are not of much interest to the

trade press, and in any case it may ta e consid-

erable engineering e ort to determine that a mal-

function is caused by a hardware aw.

. law reports (and, presumably, aws) are much

more common for early versions of the processors.

bviously: manufacturers are strongly motivated

to x these problems while their e ect on users

is limited. ften, aw reports are not available

until long after the aws have been xed.

3. law reports concentrate on processor functions

that are heavily used in common application envi-

ronments, but are not limited to those functions.

Again, this is no surprise: if a processor feature is

not used, it is unli ely that user exposure will re-

sult in discovery of an error in its implementation.

If anything, it is a little surprising that some of

the reported aws deal with obscure or pathologi-

cal uses of processor features|it seems clear that

some of these reports derive from explicit testing

rather than accidental discovery.

verall, it does not seem safe to generali e from

these properties. ithout visibility into the propri-

etary development procedures of processor and sys-

tem manufacturers, we cannot reach any conclusion

about, for example, why there are so few distinct re-

ported aws in the Pentium. Although one Pentium

aw (in oating point divide) has been extensively re-

ported, few other reports have surfaced. It is di cult

to now whether this is due to the customary report-

ing lag, an actual absence of aws, or simply a lac of

available reports. It is similarly di cult to determine

whether the little-used processor features are more or

less li ely to harbor aws (on the one hand, they are

less exercised, so errors may not have been discovered;

on the other hand, they are less li ely to have a com-

plex and optimi ed implementation, so errors may not

have been introduced).

. rt a s

e have identi ed 0 reports of aws a ecting var-

ious versions of 80x86 processors from the descriptions

in Agar , umm , Turl88, Mpr 3 .

In many cases, the reports do not identify speci c

processor versions, but refer to \early" or \some" ver-

sions; where there are multiple reports of the same

aw, it is counted in the category with the most spe-

ci c version information. It seems generally safe to as-

sume that a aw reported in one version is also present

in the earlier versions; however, there are a few re-

ports of new aws introduced by new versions. It is

also not clear the extent to which non-Intel processors

exhibit any of these faults. Some AMD processors,

which share microcode with the Intel versions, would

1

n response to the Pentiumproblems publicized in late 1994,

ntel has announced a policy of making \errata sheets" available

on a more public basis than in the past.



presumably share any microcode-based aws. th-

ers, such as Cyrix processors could introduce aws not

found in Intel or AMD versions Meth 4 .

e classi ed software aw reports as follows:

ecurity This is a aw that could possibly be exploited

directly by an unprivileged program to violate

some hardware-enforced access control or restric-

tion. These do not, however, include any misbe-

havior resulting from inappropriate setup of TCB

data structures, since that is presumably under

the TCB's control.

enial of ervice This is a aw that could apparently

be used by an unprivileged program to \hang"

the CP so that it can no longer operate. Again,

these do not include problems due to incorrect

initiali ation of TCB data structures.

ther These are all the other aws, such as those

causing incorrect computational results, those

where an incorrect exception is reported, or

where incorrect values in a TCB data structure

cause some anomalous behavior. Although these

aws could potentially a ect correct operation of

TCB software, they are not considered security-

relevant because the e ect is so indirect.

In addition to the instruction aw reports, there

are several reported aws concerning incorrect bus or

cache operation. Because these can be exercised only

from outside the processor (e.g., by I devices) and

not by instruction se uences, they were not considered

in this analysis.

Table characteri es the 0 reports of distinct

aws that we have encountered. f these aws,

are security-relevant. rom the reports on which this

table is based, it appears that it would be generally

safe

11

to construct a trusted system with any Intel 386

processor later than step B , and any Pentium. It

must be emphasi ed, however, that this is based only

on public reports of aws: no attempt has yet been

made to verify these reports or to determine whether

they have been xed in later processor versions. In

addition, as discussed above, it is not clear whether

the lac of reported security aws in the Pentium cor-

responds to a lac of actual aws or simply a lac of

available reports.

. c r t a s

This section describes potential security aws that

have been reported for various versions of the Intel 386

and Intel 486 processors. The descriptions in this and

section 4.3 are necessarily terse and dependent on a

11

The security aw for the ntel 3 0 step involves incorrect

interpretation of the permission bitmap. A system that

does not use that feature would not be a ected by this aw;

even systems that do use it would generally not be adversely

a ected. owever, to be safe, one should use a processor later

than the 0 step if the bitmap is used.

detailed nowledge of the 80x86 instruction set. A

reference to a more detailed description is associated

with aws - . law 8 was independently con rmed

by our group.

e considered a aw security-relevant if it appeared

to have any e ect on security-critical data within

the processor. or example, anything that results in

an incorrect linear address being generated would be

security-relevant. Similarly, any mis-handling of de-

scriptors, incorrect P chec s, or situations where pro-

tection mechanisms do not function properly, would

be considered security-relevant. e did not attempt

to construct detailed exploitation scenarios for these

aws because those would necessarily be dependent

on an operating system's architecture. Although in

some cases it is di cult to see how a security-relevant

aw might be exploited, it is even more di cult to

show that exploitation would not be possible, and we

chose to err on the conservative side in our assess-

ments. The existence of any nown aws, and the

possibility that others might be present but un nown,

argues strongly for avoiding the a ected processor ver-

sions in any trusted system.

. The instruction is used to load the Stac Se-

lector with data from memory. should verify

that the P of the selector e uals the DP of

the current code segment. The A step of the

Intel 386 fails to perform this chec . Turl88

. hen popping a segment selector from the stac ,

should verify that the segment is accessible.

The A step of the Intel 386, however, performs

this chec incorrectly, allowing s for otherwise

inaccessible segments. Turl88

3. Interrupts that occur in irtual 8086 mode are

handled in Protected mode. pon returning

from the interrupt, the B0 step of the Intel 386

fails to truncate the stac o set address to 6-

bits. Turl88

4. hen transferring control from a 6-bit code seg-

ment to a 3 -bit code segment via a tas gate

or gate call, but without a P change, the B0

step of the Intel 386 truncates the EIP to 6-

bits. Turl88

. The Translation oo aside Bu er (T B) is some-

times used for I addresses 000h and up, and

also coprocessor addresses; neither of these should

ever be translated. Turl88

6. Prefetching may fetch otherwise inaccessible in-

structions in irtual 8086 mode (unspeci ed ver-

sion). umm

. The bits of the I Permission Bitmap (I PB)

correspond to individual byte addresses in the

I address space. The D0 step of the Intel 386

permits access to certain addresses prohibited by

the I bitmap: if a 4-byte access is performed,

only 3 of the 4 relevant bytes are chec ed. Mpr 3



. .

Intel 386 A step
8 6

Intel 386 B0 step
0

Intel 386 B step

Intel 386 D0 step
3 0

Intel 386 \some versions"

Intel 386 \all versions"
0 0

Intel 486 \early versions"
6 0 0

Intel 486 \some versions"
8 0 0

Intel 486 A-B4 steps
3 0 0

Intel 486 A-C0 steps
0 0

Intel 486 \all versions"
0

Cyrix 486
0 0

Intel Pentium
0 0

Table :

8. and are privileged instruc-

tions introduced in the Intel 486 to invalidate

T B entries, invalidate cache, and ush and in-

validate cache, respectively. Although they are

designated privileged instructions, they operate

successfully when executed from a non-privileged

state (P -P 3).

. a r c a s

This section describes aws that have been reported

to cause various versions of the Intel 386 processor

to hang (thus, potentially, denying service to other

users). The e ect of all these aws is identical: us-

ing these non-privileged instructions, a program can

e ectively halt the processor|and the system.

. , , , for a null ( ero) selector (A

step) Turl88

. naligned 6-bit selector operand loaded with

, , , , , (A step) Turl88

3. or with last two bytes beyond

segment limit (A step) Turl88

4. or with last two bytes across

a page boundary (A step) Turl88

. with memory operand that should generate

page or GP fault (A step) Turl88

6. Some unde ned P opcodes (A step) Turl88

. , , , for inaccessible selector,

depending on contents of instruction pre-fetch

ueue (B step) Turl88

8. P instruction split across page boundaries with

second byte not accessible (B step) Turl88

. P operand that wraps around the end of a seg-

ment but straddles an inaccessible page (unspec-

i ed version) Turl88

t d or

There have been relatively few published studies of

security assurance provided by hardware components.

Most address architectural, not implementation, as-

pects.

. ar ar A a s s

In Glig8 , there is a description of the secu-

rity analysis of the relatively simple security-enhanced

oneywell evel-6 minicomputer used in the A -

evaluated SC MP system. The analysis was per-

formed relative to a speci cation of security proper-

ties, treating each instruction as a security-preserving

transition.

The Multics B evaluation Mult8 included an

informal analysis of security mechanism implementa-

tions in all hardware components. This was performed

in 84 by one of the authors (Sibert), based on inter-

active guidance from hardware design engineers. or

the CP , this analysis was based on wal -throughs of

the security-critical parts of the CP logic design at

the gate level (the Multics CP is not microcoded).

or the microcoded I controllers, the critical parts

of microcode were examined.

There are several studies (e.g., Baue84 ) about ar-

chitectural suitability of speci c processors for build-

ing secure systems, and many more about hardware

security features in general. These generally deal with

high-level issues (e.g., are there enough domains, is

process switching too expensive ), rather than with

the sort of low-level details that yield the architectural

pitfalls discussed in this paper. In McAu , there is

a discussion of maintaining hardware assurance when

modifying a trusted product, but it too addresses only

high-level architecture aspects.



. ar ar trat st

An important wor is arg 4 , which describes an

extensive test e ort directed at nding hardware aws

in the GE-64 Multics CP . This culminated in a

program (the \subverter") which achieved its goal by

demonstrating a combination of instructions and indi-

rect addressing that bypassed access chec ing on one

of the segments involved. The subverter was also run

for long periods in the hope of encountering random

failures to perform access chec s, but none were de-

tected. A similar program was developed in the early

80's to exercise the Digital A 80 architec-

ture arg 4 .

. ar ar r cat

There have been some attempts to use formalmeth-

ods to verify the correct implementation of a proces-

sor, such as Croc88, Cull8 , unt8 , oyc88, evy ,

ind 0 . These e orts were directed at overall cor-

rectness, a superset of security correctness. owever,

these e orts dealt with processors that are far sim-

pler than modern general-purpose microprocessors,

and generally employ simpli ed speci cations of these

processors. It is not clear that such techni ues are

scalable to modern microprocessors. urthermore, the

amount of time expended in these e orts has appar-

ently discouraged chip manufacturers from investing

in them: except for some small research projects, the

authors are aware of no current attempts to integrate

formal veri cation into a commercial microprocessor

development cycle.

utur ir ction

Thus far, this project has identi ed architectural

pitfalls and categori ed aw reports in one micro-

processor architecture. ur ndings point out the

utility|indeed the necessity|for the closer examina-

tion of microprocessors in high-assurance secure sys-

tem development.

Next, we intend to perform a thorough penetration-

style test of the 80x86 processors. Such testing is lim-

ited to showing the presence of aws, not their ab-

sence, but we believe that even if testing discovers no

aws, it will provide additional empirical support for

trusting the processors|and if security aws are dis-

cover, it will be extremely important for secure system

developers to avoid them.

In addition, we will develop tests to exercise

already-reported aws, at least those for which we

have enough detail to construct a plausible exploita-

tion scenario. This e ort may be hampered by the

unavailability of awed processor versions on which to

run the tests, but the goal is to have tests that can

show easily whether a particular processor exhibits

any of the nown security aws, rather than relying on

ambiguous associations of aw reports with processor

versions.

e will build a general purpose framewor for

test development to aid future penetration test ef-

forts. The framewor will support easy creation of

protected mode environments, allowing customi ation

of the framewor 's environment to correspond to the

environments used by di erent secure systems, which

di er in their use of various processor mechanisms

(e.g., use of segments and paging). The framewor

will also support automated test case generation.

Currently, our penetration e ort is limited by avail-

ability of information about the processors. In tra-

ditional penetration testing e orts, evaluators have

complete access to internal design and implementa-

tion information about the system. ere, we are using

only public information. A more thorough and cost-

e ective test could be done if design information were

available. Despite these limitations, we are optimistic;

we can only hope to be as successful as the analysis

reported in arg 4 , which was conducted under sim-

ilar conditions.

The planned tests are static: they will set up ex-

ecution conditions in a stand-alone environment and

observe the results. It would be a valuable extension

to run these tests under more stressful conditions, such

as might arise in a multiprocessor system: the inter-

action of externally-caused cache ushes, bus interac-

tions, etc., might reveal additional problems.

astly, it is not clear whether the problems iden-

ti ed here demonstrate greater wea nesses within the

80x86 family (perhaps due to its complex architec-

ture) than for other processors, or that they merely

re ect the popularity and exposure of the 80x86 rel-

ative to its competitors. During our literature sur-

vey for microprocessor implementation, we found the

preponderance of aw reports concerned 80x86 pro-

cessors, while other processor families (e.g., SPA C,

MIPS, Motorola 68000) had few or no reported aws.

n the other hand, the absence of numerous aw re-

ports does not necessarily translate into a secure com-

ponent. A recent examination of the Motorola 88 0

processor, for example, revealed that its oating point

status register provides a ag analogous to the 80x86

TS ag (see section 3. ) that is visible to user mode

processes. Particularly if our tests prove successful in

identifying additional security-relevant problems with

80x86 processors, we may extend our analysis to other

processor families.

c no d nt

Conversations with Daniel Tapper led to the iden-

ti cation of the loating Point nit timing channel

discussed in section 3. .
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