
52 Microarchitecture of AMD Family 19h Processor Chapter 2

56665 Rev. 3.00 November 2020Software Optimization Guide for AMD EPYC™ 7003 Processors

2.14 Simultaneous Multi-Threading
In order to improve instruction throughput, the processor implements Simultaneous Multi-Threading
(SMT). Single-threaded applications do not always occupy all resources of the processor at all times.
The processor can take advantage of the unused resources to execute a second thread concurrently.

Resources such as queue entries, caches, pipelines, and execution units can be competitively shared,
watermarked, or statically partitioned in two-threaded mode (see Table 3 below).

These categories are defined as:
• Competitively Shared: Resource entries are assigned on demand. A thread may use all resource

entries.
• Watermarked: Resource entries are assigned on demand. When in two-threaded mode a thread

may not use more resource entries than are specified by a watermark threshold.
• Statically Partitioned: Resource entries are partitioned when entering two-threaded mode. A

thread may not use more resource entries than are available in its partition.

Note that "Competitively Shared" is listed as the default protocol for the L3 cache, but sharing policy
can be configured. See document 56375 "AMD64 Platform Quality of Service Extensions" and
Processor Programming Reference for details.

Table 3. Resource Sharing
Resource Competitively Shared Watermarked Statically Partitioned
L1 Instruction Cache X
ITLB X
Op Cache X
Dispatch Interface X
L1 Data Cache X
DTLB X
L2 Cache X
L3 Cache X
Integer Scheduler X
Integer Register File X
Load Queue X
Floating Point Physical Register X
Floating Point Scheduler X
Memory Request Buffers X
Op Queue X
Store Queue X
Write Combining Buffer X
Retire Queue X

[AMD Public Use]

Chapter 2 Microarchitecture of AMD Family 19h Processor 53

Software Optimization Guide for AMD EPYC™ 7003 Processors56665 Rev. 3.00 November 2020

For partitioned resources, arbitration between threads is generally round-robin unless a given thread
is stalled.

It is expensive to transition between single-threaded (1T) mode and dual-threaded (2T) mode and
vice versa, so software should restrict the number of transitions. If running in 2T mode, and one
thread finishes execution, it may be beneficial to avoid transitioning to 1T mode if the second thread
is also about to finish execution.

If the two threads are running different code, they should run in different linear pages to reduce BTB
collisions.

Two threads which concurrently run the same code should run at the same linear and physical
addresses. Operating system features which randomize the address layout such as Windows® ASLR
should be configured appropriately. This is to facilitate BTB sharing between threads.

2.15 LOCKs
The processor implements logic to improve the performance of LOCKed instructions. In order to
benefit from this logic, the following guidelines are recommended:
• Ensure that LOCKed memory accesses do not cross 16-byte aligned boundaries.
• Following a LOCKed instruction, refrain from using floating point instructions as long as

possible.
• Ensure that Last Branch Record is disabled (DBG_CTL_MSR.LBR)

[AMD Public Use]

	Software Optimization Guide for AMD Family 19h Processors (PUB)
	Contents
	List of Figures
	List of Tables
	Revision History
	Chapter 1 Introduction
	1.1 Intended Audience
	1.2 Specialized Terminology

	Chapter 2 Microarchitecture of AMD Family 19h Processor
	2.1 Key Microarchitecture Features
	2.2 Cache Line, Fetch and Data Type Widths
	2.3 Instruction Decomposition
	2.4 Superscalar Organization
	2.5 Processor Block Diagram
	2.6 Processor Cache Operation
	2.6.1 L1 Instruction Cache
	2.6.2 L1 Data Cache
	2.6.3 L2 Cache
	2.6.4 L3 Cache

	2.7 Memory Address Translation
	2.7.1 L1 Translation Lookaside Buffers
	2.7.2 L2 Translation Lookaside Buffers
	2.7.3 Hardware Page Table Walkers

	2.8 Optimizing Branching
	2.8.1 Branch Prediction
	2.8.2 Boundary Crossing Branches
	2.8.3 Loop Alignment

	2.9 Instruction Fetch and Decode
	2.9.1 Op Cache
	2.9.2 Idioms for Dependency removal
	2.9.3 Branch Fusion
	2.9.4 Zero Cycle Move
	2.9.5 Stack Pointer Tracking for Dependency Removal
	2.9.6 Dispatch
	2.9.7 Using Pause Instruction to Optimize Spin Loops

	2.10 Integer Execution Unit
	2.10.1 Schedulers
	2.10.2 Execution Units
	2.10.3 Retire Control Unit

	2.11 Floating-Point Unit
	2.11.1 Floating Point Execution Resources
	2.11.2 Code recommendations
	2.11.3 FP performance on x87 code
	2.11.4 Denormals
	2.11.5 XMM Register Merge Optimization
	2.11.6 Mixing AVX and SSE
	2.11.7 When to use FMA instead of FMUL / FADD

	2.12 Load-Store Unit
	2.12.1 Prefetching of Data

	2.13 Optimizing Writing Data
	2.13.1 Write-Combining Definitions and Abbreviations
	2.13.2 Programming Details
	2.13.3 Write-Combining Operations
	2.13.4 Sending Write-Buffer Data to the System

	2.14 Simultaneous Multi-Threading
	2.15 LOCKs

	Appendix A Understanding and Using Instruction Latency Tables
	A.1 Instruction Latency Assumptions
	A.2 Spreadsheet Column Descriptions

