Parallel Programming Assignment 2

FS 2011 Out: 2011-03-03
Department of Computer Science Due: 2011-03-10
ETH Zurich

Parallel Sieve of Eratosthenes

In this exercise you will look into potential for concurrency in the Sieve of Eratosthenes and
will have to implement a parallel version of it.

The result should be a class Primes in C# that implements the I Enumerable < long > and
allows to iterate over prime numbers that are less or equal than a certain maximum maz (e.g.
200000000), where max should be an argument for the constructor. Since you are developing
a parallel algorithm, the second argument should define the number of threads that are used
for computations. It should be possible to not specify the number of threads, in which case
the number of cores in the system should be taken.

Recall the algorithm to find prime numbers using the sieve:
1. Create a list of natural numbers 2, 3, 4, 5, ..., maz. None of which is marked.
2. Set k to 2, the first unmarked number on the list.
3. Repeat:

(a) Mark all multiples of k& between k? and mazx.

(b) Find the smallest number greater than k that is unmarked. Set k to this new value.
Until k2 > max.

4. The unmarked numbers are primes.

Use the following idea for parallelization of the algorithm:

1. Using Eratosthenes, compute primes up to y/maz and store them in an array a.

2. Build p chunks of roughly equal length covering the range from /max + 1 up to maz,
where p is a number of threads.

3. Create a thread for each chunk (except for the first one) and fork it. Use the main

thread to process the first chunk. Pass a reference to a to all threads.

4. Each thread has to use the (read only) array a to get the "seeds” k to mark the numbers

in its own chunk.

5. The main thread after processing the first chunk waits for all threads to join.

Obviously with this approach up to y/max computations will be done sequentially. Before you

start experiments use Amdahl's law to predict the speed up. Write down your predictions.



Assignment 2 2

The solution should contain your implementation of Primes class and some other class with
the Main method that tests your implementation. This method should also measure time that
takes to initialize an instance of Primes (i.e. compute the prime numbers). Compute it for
different number of threads starting from 1 and up to 4x number of cores in your computer.

Compare your experimental results with your predictions. Explain results. Include the mea-

surements into the report.

What to turn in

Please turn in your solution into your SVN directory. Please place your explanations and
predictions in either a text file or in the source code as a comment.

Please commit source files only. Do not commit: dll, exe, pdb etc.



