

Definition für verwendete Fachausdrücke

Selektion: Die Selektion ist die Absenkung eines Frequenzbereiches gegenüber einem ande-

ren Frequenzbereich.

Übersprechdämpfung: Die Übersprechdämpfung wird bei schaltbaren Signalstrecken angegeben. Sie ist

die Differenz zwischen den Durchgangsdämpfungen im geschlossenen und offenen

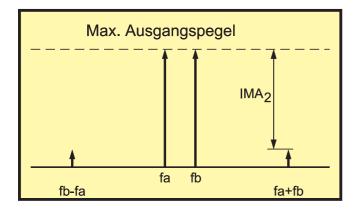
Schaltzustand.

Entkopplung: Die Entkopplung ist die Dämpfung der unerwünschten Signalübertragung zwischen

zwei unterschiedlichen Signalwegen.

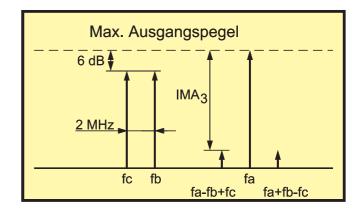
Nicht zulässig in Einem breitbandigen, nicht selektiven Verstärker sollten

Empfangstellen: Antennensignale nicht direkt zugeführt werden!


Zur Vermeidung von Störungen empfiehlt SPAUN das Vorschalten eines Selektions-

mittels (Antennenweiche, Bereichs-/Mehrbereichsverstärker).

Messverfahren zur Bestimmung des max. Ausgangspegels

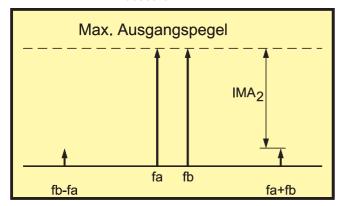

- Geräte für Kopfstellen (z. B. Mehrbereichsverstärker mit selektiven Bereichseingängen).
 - → EN 50083-5

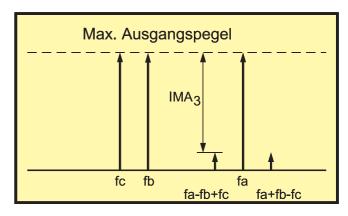
Intermodulationsprodukte 2. Ordnung

Der max. Ausgangspegel wird bei 60 dB Intermodulationsabstand (60 dB IMA₂) angegeben. Die Messung ist äquivalent zur früheren Messung nach DIN 45004 A1.

3-Träger-Messung

Kreuzmodulation (Intermodulationsprodukte 3. Ordnung)


Der max. Ausgangspegel wird bei 66 dB Kreuzmodulationsabstand (66 dB KMA) angegeben. Die Messung ist äquivalent zur früheren Messung nach DIN 45004 B.



Messverfahren zur Bestimmung des max. Ausgangspegels

- Aktive Breitbandgeräte (z.B. Hausanschluss-/Nach-/SAT-ZF-Verstärker).
 - → EN 50083-3

2-Träger-Messung

Intermodulationsprodukte 2. Ordnung

3-Träger-Messung

Intermodulationsprodukte 3. Ordnung

Terrestrik/ CATV: Der max. Ausgangspegel wird bei 60 dB Intermodulationsabstand (60 dB IMA_2 und 60 dB IMA_3) angegeben.

Achtung!

Seit dem 1.1.1996 sind die Ausgangspegel nach EN 50083-3 anzugeben.

Das Messverfahren der früheren Norm DIN 45004 B liefert stets 6 dB höhere Ausgangspegel!

SAT-ZF:

Der max. Ausgangspegel wird bei 35 dB Intermodulationsabstand (35 dB IMA₂ und 35 dB IMA₃) angegeben.

■ Vielträgermessung

Composite Triple Beat (CTB):

Max. Ausgangspegel bei Betrieb des Verstärkers mit 19/29/42 Kanälen nach CENELEC-Raster bei 60 dB IMA3 innerhalb der Kanäle.

Composite Second Order (CSO):

Max. Ausgangspegel bei Betrieb des Verstärkers mit 19/29/42 Kanälen nach CENELEC-Raster bei 60 dB IMA₂ innerhalb der Kanäle.

1R8-15:

Der max. Ausgangspegel wird nach der Richtlinie 1R8-15 bei 72 dB IMA_3 bzw. 69 dB IMA_2 - unter Berücksichtigung von 36 analogen TV-Programmen + UKW bis 450 MHz - angegeben.

1TR8-1:

Der max. Ausgangspegel wird nach der Telekom-Richtlinie 1TR8-1 bei 60 dB IMA_3 und 60 dB IMA_2 - unter Berücksichtigung von 28 analogen und 63 digitalen Programmen (einschl. UKW) bis 862 MHz - angegeben.

Pegelreduzierung

Die ausschlaggebenden Parameter für den maximal möglichen Ausgangspegel eines HF-Verstärkers sind die Anzahl der Träger und das Kanalraster, mit denen der Verstärker betrieben werden soll.

Für die Errichtung moderner Kabelnetzstrukturen haben sich die CTB/CSO Angaben zur Beurteilung der Leistungsfähigkeit eines Verstärkers durchgesetzt.

Der Vorteil der CTB/CSO Messwerte liegt in der sofortigen Verwendbarkeit der Pegelangaben.

(Benötigen Sie Informationen zur Aussteuerbarkeit von SPAUN BK-Verstärkern für Ihr spezielles Kanalbelegungsraster? Wenden Sie sich an unsere technische Hotline, wir helfen Ihnen gern.)

Die bisher üblichen $IMA_2 / IMA_3 / KMA$ Ausgangspegelangaben werden bei einer Belegung mit 2 bzw. 3 Trägern gemessen und müssen deshalb zur Ermittlung des Betriebspegels bei Mehrkanalbelegung entsprechend der unten genannten Tabelle **pegelreduziert** werden.

Nur für die SAT-ZF dürfen die Katalogangaben IMA $_3$ gemäß EN 50083-3 als Reduzierungsgrundlage verwendet werden.

Anzahl der Träger	2	4	6	8	10	12	16	24	36
Anzahl der Verstärker	1	2	3	4	5	6	8	12	18
Pegelreduzierung in dB *	0	3	5	6	7	8	9	11	12

^{*} Die Werte gelten für KMA Messwerte, die gemäß DIN 45004 B ermittelt wurden. Zur Umrechnung der IMA 3 Messwerte die nach EN 50083-3 ermittelt wurden, müssen 6 dB zu den Katalogangaben addiert werden, bevor die Pegelreduzierung It. Tabelle angewendet werden kann. Siehe dazu auch Punkt 2 Messverfahren zur Bestimmung des max. Ausgangspegels.

Bei Vollaussteuerung des ersten Verstärkers innerhalb einer Verstärkerkaskade müssen die nachfolgenden Verstärker gemäß der oben angegebenen Tabelle pegelreduziert werden.

Anmerkung:

Besser ist es, den ersten Verstärker im System nicht voll auszusteuern. Damit erhält man eine Pegelreserve, die den Einsatz der nachfolgenden Verstärker vereinfacht.

Rauschen

Das Rauschmaß gibt bei einem Einzelverstärker die Verschlechterung des Signal- / Rausch-Verhältnisses durch den Verstärker an.

→ Ausschlaggebend für das Rauschen eines Gesamtsystems ist der erste Verstärker (Rauschmaß des Mehrbereichsverstärkers / Rauschmaß des LNB).

Die entscheidende Größe zur Darstellung der Signalqualität ist das sogenannte C / N (Carrier to Noise Ratio = Träger-Rausch Verhältnis oder Rauschabstand; üblicherweise in dB angegeben).

Jede Komponente im Signalweg hat durch Ihr Eigenrauschen negativen Einfluss auf das C / N. Wie stark dieser Einfluss ausfällt, hängt entscheidend vom C / N und vom Signalpegel am Eingang der Komponente ab. Wenn von einem identischem Eingangs C / N ausgegangen wird, wirken sich 6 dB Komponentenrauschen bei 60 dBμV Eingangspegel wesentlich stärker aus, als 20 dB Komponentenrauschen bei 80 dBμV Eingangspegel. Am besten ist der C / N Wert am Ausgang der Signalquelle, bzw. am Eingang des Verteilnetzes. Im Netzverlauf kann das C / N nur noch schlechter werden, aber NIEMALS besser!

Um den Einfluss des Komponentenrauschens auf das C / N gering zu halten, darf der Signalpegel vor der Nachverstärkung nicht zu weit absinken (Schräglage beachten).

 $\textbf{Faustregel:} \ \ \text{Der Signalpegel sollte auf der Linie nicht unter 70 dB} \mu \text{V (AM-RSB) fallen}.$

Hinweis:

Das C / N der AM-RSB und 64 QAM modulierten Signale im Kabelnetz (CATV) reagiert wesentlich empfindlicher auf eine Unterschreitung des Mindestsignalpegels als die FM und QPSK modulierten Signale der SAT-ZF.