US 20210272349A1

a2y Patent Application Publication o) Pub. No.: US 2021/0272349 A1l

a9y United States

SCHLUESSLER et al.

43) Pub. Date: Sep. 2, 2021

(54) POSITION-BASED RENDERING APPARATUS
AND METHOD FOR MULTI-DIE/GPU
GRAPHICS PROCESSING
(71) Applicant: Intel Corporation, Santa Clara, CA
(US)
(72) Inventors: TRAVIS SCHLUESSLER, Berthoud,
CO (US); ZACK WATERS, Portland,
OR (US); MICHAEL APODACA,
Folsom, CA (US); DANIEL
JOHNSTON, Portland, OR (US);
JASON SURPRISE, Beaverton, OR
(US); PRASOONKUMAR SURTI,
Folsom, CA (US); SUBRAMANIAM
MAIYURAN, Gold River, CA (US);
PETER DOYLE, El Dorado Hills, CA
(US); SAURABH SHARMA, El
Dorado Hills, CA (US); ANKUR
SHAH, Folsom, CA (US); MURALI
RAMADOSS, Folsom, CA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA

Us)

(21) Appl. No.: 17/306,769

Related U.S. Application Data

Continuation of application No. 16/116,158, filed on
Aug. 29, 2018, now Pat. No. 10,997,771.

(63)

Publication Classification

Int. CL.
GO6T 15/00
GOG6T 15/40
GOG6T 15/80

U.S. CL
CPC ... GO6T 15/005 (2013.01); GO6T 2210/52
(2013.01); GO6T 15/80 (2013.01); GO6T 15/40
(2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)
(52)

(57) ABSTRACT

Position-based rendering apparatus and method for multi-
die/GPU graphics processing. For example, one embodi-
ment of a method comprises: distributing a plurality of
graphics draws to a plurality of graphics processors; per-
forming position-only shading using vertex data associated
with tiles of a first draw on a first graphics processor, the first
graphics processor responsively generating visibility data
for each of the tiles; distributing subsets of the visibility data
associated with different subsets of the tiles to different
graphics processors; limiting geometry work to be per-
formed on each tile by each graphics processor using the
visibility data, each graphics processor to responsively gen-
erate rendered tiles; and wherein the rendered tiles are

128

(22) Filed: May 3, 2021 combined to generate a complete image frame.
e s
PROCESSOR CORE(S) - 107 | {l!
GRAPHICS cacH || REGISTER i
PROCESSOR(S) 104 INSTRUCTION SET t :
108 - 109 :l
1
PROCESSOR(S)
102
[PROCESSOR BUS |
“OJ @
________ . MEMORY DEVICE - 120
b EXTERNAL | MEMORY p—
! GRAPHICS |® CONTROLLER @ INSTRUCTIONS - 121
I PROCESSOR | HUB
! 12 ! 18 DATA - 122
DATA STORAGE : LEGACY /0
DEVICE <:> CONTROLLER
124 149
USB CONTROLLER(S)
WIRELESS . 110 EY
TRANSCEIVER <:> CONTROLLER <—> i keveoarD !
12 HUB { [MOUSE-144 |
130 o mouse-le
FIRMWARE
NTERFACE K K= AUDIO G?EJGTROLLER

NETWORK
CONTROLLER
134

100

Patent Application Publication

Sep. 2,2021 Sheet 1 of 34

US 2021/0272349 Al

PROCESSOR CORE(S) - 107 | |!!

g

GRAPHICS cacHE || REGISTER 1
PROCESSOR(S) 104 FILE INSTRUCTION SET)
108 - 106 109 ‘ :
L

PROCESSOR(S)

PROCESSOR BUS

Y mmmn e - - ——— ——

1

MEMORY DEVICE - 120

! EXTERNAL | MEMORY
! GRAPHICS | <:> CONTROLLER INSTRUCTIONS - 121
‘ PROCESSOR | HUB
' 12 Jf 16 DATA - 122
DATA STORAGE LEGACY 1/O
DEVICE CONTROLLER
124 140
USB CONTROLLER(S)
WIRELESS 110 142
TRANSCEIVER <‘r:> CONTROLLER [_KE_YB_OKRB -
12 ?gg | IMOUSE-144 |
FIRMWARE
INTERFACE AUDIO CONSTROLLER
128 146
NETWORK
CONTROLLER
134 FIG. 1

100

g ALIE
<
r~
S
a
Q
wn
-]
T
m 80z
~ H0SSIO0Hd SOIHAYHO
3 (¥4
= HITIOHINOD
AY1dSId
m i Joossesesssssesmenens
S 144 21z - ONI 573
& 517 mmﬁww,_%,_oo 90Z - (S)LINN FHOVD Q3YVHS 7 TINTON ANOWIN
@ (SILINN r——=- | — ol a3aa3ans
¥3TIOYLNOD | NVOC vv0e
= s (SILINN (S)LINA
2 sShg 1174 _ JHOVD _ -n
5 ENo) i | _3HovO
= INFOVWALSAS | NZOZ 0D | V20Z 3400
h — —— w— ch—
g
=
=%
«
=
=
& 00Z HOSS300Md

A | |

: ¢ 9Old __

m 0z¢

~

g 3I0IA3A

= AV1dSIa

& ~

m AN

3 PIE - IOVAHILINI AMOWIN

Gmmi T e e e v v i v wn e v e v o v e e e v e i e e e e e e e

=} 3 §

er; i [

5 _ _

5 i §

7 ; "

- “ .

= i i

o { §

~ { f

g — e e — | — -

2 90¢ ! 9} H_~ > Gl ¢ _._H A _ 0 20¢
INIONT | _

= 93009 1] 3ANNEdid WILSAS-ANS ANIT3did | ;| 3NIONI HITIOHLNOD

.m 03qIA ' vigaw vIQaW/AE ae . g AV1dSIg

3] { !

= ! 0L€

£ " m/ ANION3

g e ; ONISSIOOHd SIIHIYHD

=

(=9

-

5 00¢

Z HOSSIO0Ud SOIHdYYED

US 2021/0272349 Al

-+
o)
[
(=]
-
m YA
wn
y—
o
&
o YA
s
R
oA

ey

Patent Application Publication

(S)aHOYD

NOILVOINNWIWOD
Qv3dHI-H3INI

HIVIA

d31dIWVS

0cy
1907
NOLLONNA
J34vHS

S

Oly

INIONT ONISSIO0Ud SOHAVHO

Aowop
Wou4
Y
m..l......m
o |
. Anwnnnnnn¢ EINRELF I —
25 VIGIN |
AV FH0D o
SOIHAYYD T
YINYIILS
ANYIINOD
<] .l
%3
ENREE:
D @ [
ST —
¥344Nn8g
NMNL3Y
a3iINn <

US 2021/0272349 Al

Sep. 2,2021 Sheet 5 of 34

Patent Application Publication

|
¥ L

————— aaas aesas seeas eaan aaaan aaa——

IS

L T

J0SSS300Hd
SOIHdYHO

I NC9G _

| sudvs | sn3 |

N09G - J402-8NS

I Ness
S
|| SuTIaNvS || sn3

___ NOGS HOD-ENS

GOl

V085 -~ 300 SOHAVHO

a5
SYIAYS

V298
N3

Y095 - IH0D-aNS

Y0IS

S30dN0S3Y G3HVHS

vhss
SYTTdNVS

vese
snd

V0SS 3HO00-9NS

9es
3INIT3dId
AHL3NOID

7EG
N3 INOYA
03aIA

£es
X4

0es
J0A

ZEG - INION3 VIG3N

€05
HINYIHLS
aNYINNOO

LOINOIHILNI ONIY

v0S L

ON3-LNOH4

AN3did

¢0S

US 2021/0272349 Al

9 'Ol

Sep. 2,2021 Sheet 6 of 34

Patent Application Publication

] _...... I 1] { i
55 | "
o na | n3 HOVO NOILONYLSN]
— |
219 | |
JHOVD VIV L
m..! -
019 e " %0 | V09 e @
TN N8 | D805 | VR0 ¥AHOLYASIC | HOSSI00Md
| N3 " N3 N3 av3IyHL HAAYHS
]
009
91907 NOILLNDIX3

US 2021/0272349 Al

Sep. 2,2021 Sheet 7 of 34

Patent Application Publication

0C1 - uiey J0j08p —= OXXXX{L 0 [{0=9p0oodo N 0_&
3V1 - B fBllesed —s GXXXXQ0 L0=2p0odo
Op] - SNOBURJSISIY —> gXXXX} | =8p0odo
FPT - 104U0T MOl —s GXXXXQ | 00=2p0ado
7¥1 - 0BoyPA0N —> Qxxxxmmo.omonmvooao
; ofitlzielv]slol:
0vi
300030 300240
2l | 07 | 8V 2y gL | o1
}OYS | 00YS | L1S30 | TOHINOD | X3ANI {2002d0
O 02 ——
NOILONYLSNI LOVdNOD LIg-¥9
=== - ————-——- il s e — — ——7—
i 9¢L I vzl el 0cL 8l 914 147 A7
] JA0NW SS3YAAV/SS30TY mmoxm LIS | 00YS | 1530 [3ZIS-03X3| TOULINOD {3003d0
0VZ

NOILLONHLSNI Lig-82)

00L

S1VIAYOL NOLLONULSNI 30SS300¥d SOIHdVID

e

Patent Application Publication Sep. 2, 2021 Sheet 8 of 34 US 2021/0272349 A1

GRAPHICS PROCESSOR
800 MEDIA PIPELINE
830
\ DISPLAY ENGINE
COMMAND ('\ B0
*| STREAMER f§------ o
GRAPHICS 303 A
e VEORTNL L
802 820) H Y X
e - - B J) !l 2pENGINE || DISPLAY
| N T . » CONTROLLER |1
y | VERTEX i : = 843 ?
T FETCHER [T} EXECUTIONLOGIC L _ _ _ _ _ _ _ e
805 ‘ 850
| | ! Yy
§
! VERTEX Y ! EXECUTION
' | SHADER |r— units || [SAMELER
, 807 ; L1 852 854 JITEXTURE
O ey TRR - g51 ||| EXECUTION 858
= | SHADER b} 856
=z ! t &) 8528
(@] § -8-11 i = A
3
2 i | i < [
L ! : 2,
E || |TESSELLATOR] 1 =)
o \ 813 : < § £ 3
A \J
1 AT i
| SovAN Y = RASTER/| | L3 PIXEL 873
L shaper L > | DEPTH | | CACHE | | OPS =
f
U o ||]|
i 879
! (GEOMETRY -
| SHADER f—br)
: 31_9 X f 3
§ i
¥ §
o STREAM | 1 RENDER OUTPUT
- out ; PIPELINE
¥ | 823 ! 870
: v .
! CLIP/ ;
! SETUP
1 829 !
Lo Tl §

FIG. 8

Patent Application Publication Sep. 2, 2021 Sheet 9 of 34 US 2021/0272349 A1

FIG . 9A GRAPHICS PROCESSOR COMMAND FORMAT
900

CLIENT OPCODE | SUB-OPCODE DATA COMMAND SIZE

902 904 905 906 908
FIG. 9B GRAPHICS PROCESSOR COMMAND SEQUENCE
310
| ~ PIPELNEFLUSH |
012 |
Bvere ovoonss ovorsen movsem ..; oo woroes rovoren ovovore
Y _
| PIPELINE SELECT |
13 |
| SO, .; osne oavonss oncamn onne
PIPELINE CONTROL
914
RETURN BUFFER STATE
916
v 924
I o
3D PIPELINE STATE MEDIA PIPELINE STATE
930 940
3D PRIMITIVE MEDIA OBJECT
932 942
EXECUTE EXECUTE

934 944

Patent Application Publication Sep. 2, 2021 Sheet 10 of 34 US 2021/0272349 Al

MEMORY
1050

DATA PROCESSING SYSTEM -1000

A

3D GRAPHICS APPLICATION
1010
SHADER INSTRUCTIONS EXECUTABLE INSTRUCTIONS
1012 1034
GRAPHICS
OBJECTS

1016

4 \J Y
OPERATING SYSTEM (0S)

1020
USER MODE GRAPHICS DRIVER
1026 _ | SHADER & | aRapHiCS AP
«+{ COMPILER |e- ‘02
SHADER COMPILER 1024 —
1027
A
! 0S KERNEL MODE FUNCTIONS
KERNEL MODE GRAPHICS [—’ 1028
DRIVER —
1029
A A A
Y \ A 4
GRAPHICS GENERAL
PROCESSOR PRO%%%SOR PURPOSE CORE(s)
1032 — 1034

FIG. 10

US 2021/0272349 Al

Sep. 2,2021 Sheet 11 of 34

Patent Application Publication

091}
NOILOINNOD
SSTTIUIM
05141 EAASAYA 05T ALITIOV4 NOISaa
NOILDINNOD
R e
™ (418 NOIS3Q 13ATT -
(VIv¥d NOISIa YIISNYHL ¥31SIO3Y P
TWIISAHd HO TaH) — %ﬁ%ﬁ%
N | 1300 FUYMAHYH ZiT
, T3A0ON NOLLYINWIS
5OTT an
AHOWIW
ALITIOVA :
NOLLYDREYH LY I0IA-NON

0011 - INFNJOTIAIA IHOO d

Patent Application Publication

Sep. 2,2021 Sheet 12 of 34

US 2021/0272349 Al

GRAPHICS PROCESSOR
-
(~ N\
VERTEX PROCESSOR
1305
FRAGMENT r“FEA_G_MEN?-f | FRAGMENT |
PROCESSOR | | PROCESSOR | === | PROCESSOR |
1315A | 1315¢ b 1315N1
| FRAGMENT | r_FﬁAEMEN_T_: | FRAGMENT |
| PROCESSOR | | PROCESSOR , emem ! PROCESSOR |
13158 1 | 131D 135N |
MMU MMU }
1320A 13208 ,
o oos oot woos oo oo mooias oos wooos oot oo o =
____________ 1
CACHE CACHE ,
1325A 13258 :
___________ =
~~~~~~~~~~~~ ;
INTERCONNECT INTERCONNECT ,
1330A 13308 :
mmmmmmmmmmm .
N 7,

FIG.

13



Patent Application Publication  Sep. 2, 2021 Sheet 13 of 34  US 2021/0272349 Al

S0C
INTEGRATED CIRCUIT
1200
APPLICATION GRAPHICS
PROCESSOR(s) PROCESSOR
1205 1210
IMAGE VIDEO
PROCESSOR PROCESSOR
1215 1220
UsB UART | | spiispio | | 1P8%C | | DisPLAY
1225 1230 1235 1240 1245
SECORITY | MEmORY | | FLASH || wit | HOw
o 1| e || s | g5 || 1250
e e — g b e -
\S 7,

FIG. 12



Patent Application Publication Sep. 2, 2021 Sheet 14 of 34  US 2021/0272349 Al

GRAPHICS PROCESSOR
1410
// \\
INTER-CORE TASK-MANAGER
(e.g., THREAD DISPATCHER)
1405
SHADER | | SHADER | | SHADER | | SHADER |
CORE |! CORE I! CORE | ewe= | CORE |
1415A |1 1415C ! 1415E | ' 1415N-1 |
| S T I | SR
| SHADER | | SHADER | | SHADER | | SHADER |
| CORE Il CORE I! CORE | o | CORE |
14158 IV 14150 1 1415F | P1415N |
e e e e ed b e e b e - e — - e o
TILING UNIT
1418
l'_—'_—'———_———_"
MMU ! MMU ,
1320A | 13208 ,
____________ J
| T e e e ;
CACHE ; CACHE |
1325A | 13258 |
I - - - - - — — — — —— J
| T T T e e |
INTERCONNECT | INTERCONNECT ,
1330A | 13308 ;
I e v v o o - —— - —— — — o
N .

FIG. 14



Display
Device(s) |
1510B

Communication

Link T
1513 pem o e b oo

I
| Processor(s)
| 1502
l

Patent Application Publication  Sep. 2, 2021 Sheet 15 of 34  US 2021/0272349 Al
1500 .
Wireless Network
Network Adapter
Adapter 1518
1519
/O Switch D/:f/‘i;? )
Display 1516 15705
Device(s) I
1510A
SEm——
System
1/0 Hub Storage
1507 1514
[]
Input / R — I/O Subsystem
Device(s) 1511
1508 R
Communication
Link 7 |
1506
e ———— . —
i
i
| Parallel Processor(s) Memory System
I 1512 Hub Memory
| — S 1505 1504
]

Processing Subsystem
1501

FIG. 15



Patent Application Publication  Sep. 2, 2021 Sheet 16 of 34  US 2021/0272349 Al

i
t
!
! Parallel Processor Memory 1622
j
i

Memory Memory Memory
L Unit Unit s o0 Unit Parallel
L 1624A 1624B 1624N Processor

1600

Partition Partition Partition
Unit Unit e e Unit
1620A 1620B 1620N

Memory Interface 1618

Memory Crossbar 1616 —
Cluster Cluster | ®*®*®] Cluster
1614A 1614B 1614N
Processing Array 1612
Scheduler 1610
Front End Host Interface gg ¢
1 1608 1606 1604

Parallel Processing Unit 1602

Memory Hub
1505

FIG. 16A



Patent Application Publication

To/From
Memory Unit
1624

A

Sep. 2,2021 Sheet 17 of 34

US 2021/0272349 Al

A 4

Frame buffer
Interface
1625

ROP
1626

L2 Cache
1621

Partition Unit
1620

A

A\ 4

To/From

Memory

Crossbar
1616

FIG. 16B



Patent Application Publication  Sep. 2, 2021 Sheet 18 of 34  US 2021/0272349 Al
To
Memory Crossbar
1616 and/or
other Processing
Clusters
A
PreROP
MMU 1642 Data Crossbar
1645 1640
To/From Texture
Memory . Unit
Crossbar G.raphxchf 1636
1616 Multiprocessor
1634
L1 Cache
1648
Processing Pipeline Manager
Cluster 1632
1614
\ 4
To/From
Scheduler
1610

FIG. 16C




Patent Application Publication  Sep. 2, 2021 Sheet 19 of 34  US 2021/0272349 Al

A
4
Shared Memory Cache Memory
1670 1672
[ Memory and Cache Interconnect 1668 ]—
s s e - - -] ': b e ] e - - "
Load/Store ;: GPGPU E{
Unit H Cores N
1666 I 1662 ;g
i i,
Register File 1658
Address MAap pig Instruction Unit
Unit 1654
1656 .
Graphics .
Multiprocessor Instruction Cache 1652
1634
From
Pipeline Manager
1632

FIG. 16D



Patent Application Publication

Sep. 2,2021 Sheet 20 of 34  US 2021/0272349 A1l

Graphics Multiprocessor 1725

Interconnect Fabric 1727

Shared Memory 1746

Cache Memory 1742

Load/Store | GPGPU | GPGPU
Unit Core Core
1740A 1738A | 1737A

GPGPU
Core
1736A

Load/Store | GPGPU | GPGPU | GPGPU
Unit Core Core Core
1740B 1738B | 1737B | 1736B

Register File 1734A

Register File 1734B

Instruction Unit 1732A

Instruction Unit 17328

Instruction Cache 173

FIG. 17A



Patent Application Publication Sep. 2,2021 Sheet 21 of 34  US 2021/0272349 Al

Graphics Multiprocessor 1750

Interconnect Fabric 1752

Shared Memory 1762

Texture Unit(s) 1760A Texture Unit(s) 1760B

Cache Memory 1758A

Execution Resources 1756A Execution Resources 1756B

Texture Unit(s) 1760C Texture Unit(s) 1760D

Cache Memory 1758B

Execution Resources 1756C Execution Resources 1756D

Instruction Cache 1754

FIG. 17B



US 2021/0272349 Al

Sep. 2,2021 Sheet 22 of 34

Patent Application Publication

eC8l
KIOWIN
addD

eS81

<081
ATOUIN
10$83001d

V31 DId

<8l
KIoWoN NdO

PRI
581
€T8T ZT8T
o NdO
vl 81
9081
J0S$3201g A
210D-1NN
18T

€81

181
AIOWIN 1dD
P81 0S81
158 ﬁl\@
TTST 0T8T o
0doH NndoH 1dD
181
081
SORI 1081
N J0$$3001J AJOWIN
V| I0D-INA J0S$$9001g
0e81




US 2021/0272349 Al

Sep. 2,2021 Sheet 23 of 34

Patent Application Publication

d81 'DId

AJOWAN WAILSAS

6C8T
OWIN
g¢8T
OQUﬁU
P81
yoraq
W N
CER1
WAW |_y| DNISSHDONd |¢_ st
X0 SOIHA VIO > SISOy
SFIT
: LINDIN 1XajuoD)
e - 75l
e8! cesl LD LdNINI
WAW | 5| ONISSED0N |¢ |
XD SOTHAVED SeaT
NOLLVYOTINI
........... JOLVITTADOV
egl 73T
WAW |¢_5| DNISSHOONd | | AW
XD SOHAVHD | Teql
AINI
SHET

UONRIPNY soydein)

LOST
JOSS3001]

.
L4
.

acest
(s)aqoe)

drost
qg1L

(JOORL 210D

Ge8l
JINI

ST8T

C AXOud

$OR 1 Sng 90UAIRYO))

D981
(syooe)

q1LL

1
t
t
t
t
t
1
21981 !
t
t
t
t
1
H

: HauBl
! (syouor)
i
1

"

]

]

]
q1937
q91L "
;

]

Vg1




D81 DId

181
AIOWBN walskg

US 2021/0272349 Al

1
1 AT
i BERT 9¢8l S
! (s)ayor)) pareys LOR]
m NN JOSSQ001]
- ey REeT Yy YN e e e «
< ” Ae81 . N 5Co81 |
S 1 yor)D . i h
M ” : V1 (S)eyory m
]
& ” sl azosT “ ”
3 ! 1994 {s)oyoeDd ! 1081 m
=] 1 K 7
72) P S o e o W W W W W W e T e W M e e W W W W W e e e e e e e - 1 Wﬂmwlm. 1 mNH,M; ”
— L sISI30Y amsT | Ko ST |
N ; W N ; ” g1l Lol ool
& P]OWHIN | o) ONISSIO0Nd [ " ! 3FR1 TR
M X0 SOIHd VYD P LINOW 110D 93T 210D L sgoe |
& ! o i m m
" : ; " INDIW LIELINI AHV_ g1987 |
= H b o |
S v]ovest CE8T ; ” 9¢8T CT8T | :
2 Ul WA || DNISSHDONd 1| nomvanaint —2| axoud K | 09T 210D |
& t § ] ' 3
w ' Xd4D SOIHAVED " ! AOLVIZTIDDV (ZTTITIITIIIIL
1 = t
= ' | " _ V98T |
nm ST TE8T m ! Mw | @m0 “
(=] FTEQT Jann— t
= HlOWEN | DNISSHOOW [ | o wmwm N 58] e ]|
£ x40 SOIHAVEO mm— N ogw |
= ~ 14V ; " " _
= M Py _ “
m : 98T “ ! m VO9RT 210D .
m m uoneRPY sowydein ‘movwﬂ LSRR RS A |
nn._a .................................. $Og| Sng I0UAIIYO)



Patent Application Publication  Sep. 2, 2021 Sheet 25 of 34  US 2021/0272349 Al

Processor 1807

Application 1880 Application

GPU Invocation

GPU Invocation 1881

Application Effective Address
Space 1882

1 t

1 ]

1 ]

1 1

] 1
! . 1 :
E Process Element 1883 ' i |
t ! 1 t
| E i Segment/Page Tables '
] 1 - - i
| Work Descriptor (WD) 5 ! 1886 !
: 1884 v ‘
] ) L ___________________________ ]
' 1

Accelerator Integration Slice
1890
MMU 1839

WD . .

Registers Interrupt MGMT &~ Effective
Fetch © .
. 615 1847 INT Address
1891
1892 1893
Context MGMT
1848
Save/Restore
4

Graphics Acceleration 1846

FIG. 18D



US 2021/0272349 Al

Sep. 2,2021 Sheet 26 of 34

Patent Application Publication

68T
SSUPPY
2ABOH

H81 "DId

OpR1 UONBIe[oddY soydeln)

AI0)89Y/2ARS

Y81
LINDIN X107

681

............ Fe S~ | TesI
INI T B 1681

681 NN 06381

201§ HONRIZNU] J0JEIO0Y

SIASITRY /x\\ HOLHEA M

! — Lo L ”
u 6681 P " ! V88T :
! 1817 ! ! 9881 ! ' (M) J01drosact Yo ;
: OO S$2001] ! ! soIqeL | " “
! o adeqpuowmdag | € — . '
” " “ “ ! $QRT JUQY S$AV01 ;
1 QEQT ¢ Q 388 e e -
} 8087 9THS MOPPY m m $RRT ooedg “ T8]T oordg ssa1ppy
: 1oy Jostazad Ay ! b o ad
T “ | SSOIPPY [eMIA SO aanoapH uopeolddy
THRT Ao WasAS Rttt ieiebebebede -
)
9681 <681 0831
JosiaxedAyg SO uoneanyddy




US 2021/0272349 Al

Sep. 2,2021 Sheet 27 of 34

Patent Application Publication

AT "DIH

ATOWON
patjiufy
T T R

eC8l [14]! 181 081 i 081 | 1081

KIowajy AIOWRIN KIOWON KIOWIS]N m Klowspy | Alowopy

ndo ndo ndo ndn 1 JI0ssa001d m 108$3001d

: !
N
||||||| AN NN S e Y ___ I, A Y
| ! " i “ “ " : i, |
“ Hp681 ! “ dvesi " “ V681 ! ! qr681 m ; Vo681 ;
1| oouarayo) |} 'l oouarayo) m | eouazoyon |} 1| oouareyo) | 1| oouarayoy |1
m /serd | m /sergd “ m /serd " ; /serd | m /serd m
| " t 1 | “ " i t 1
" ! _ RN ! ! BRI "
| T6ERT AN | TOCSTTIAN | | | | D6E8T AN } GGESTNINN | | |} VEEST AN |
SR e J SR, el e e 3
SO81
¢8I CI8l [k 0181 J0§53001d
addD adp Odo Ndo 2I0D-NBA




Patent Application Publication  Sep. 2,2021 Sheet 28 of 34

US 2021/0272349 Al

Graphics
Processing
Pipeline
1900

_

Raster Operations Unit 1926

|

Memory

Fragment/Pixel Processing Unit 1924

4—@—+ Interface

iy

1928

Rasterizer 1922

Y

Viewport Scale, Cull, and Clip Unit 1920

Y

Primitive Assembler 1918

i

Geometry Processing Unit 1916

: 1916

Primitive Assembler 914

Y

Tessellation Evaluation Processing Unit 1912

|

Tessellation Unit 1910

e

v

Primitive Assembler 1906

y

Vertex Processing Unit 1904

y

Data Assembler 1902

FIG. 19

v
Instruction Stream
and Parameters




Patent Application Publication  Sep. 2, 2021 Sheet 29 of 34  US 2021/0272349 Al

FIG. 20




Patent Application Publication  Sep. 2, 2021 Sheet 30 of 34  US 2021/0272349 Al

J’”“
-
3 N




US 2021/0272349 Al

Sep. 2,2021 Sheet 31 of 34

Patent Application Publication

¢ 'Old

ﬁ anN3 w

1

S0¢T
SNMO L1 3L QUVOGEINIIHI HOVI ¥O4 SIDLEIA F18ISIA
NO MYOM 3NIT3dId DNIYIANIY SLNINWITdNIT NdD/NA HOV3

T

144744
SIALLINRE INVATTIY AINO OL MHOM AYLIANOCTS LINGT OL viva ALITIGISIA
IHL SISN NdD/3IA HOVI 'STTLL INVAT1IIY ¥O4 NdD/3IQ HOVI OL Viva ALIEISIA ON3S

€07¢
FHL QUVOTLINIIHO HOVI HO4 VIVA ALITHGISIA
JIVYINID OL STIL QYVOgUINIIHD TV ¥04 NdD /3id
HOV3 Ag MYOM QINDISSY NO DNIAGVHS NOILLISOd INHO443d

T

[dirad
NdD/31Q HOVI OL MYOM ONIQVHS NOLLISOd SNDISSY HIAING

T

10¢¢
1dV DONIYIANTY VIA 43AHA OL
HHOM Q€ SLIANGNS NOIIVIddY

1

ﬁ 14v1S w




Patent Application Publication  Sep. 2, 2021 Sheet 32 of 34  US 2021/0272349 Al

2300

FIG. 23




v¢ 'Ol

..m.w.w..m % i
3140/Ndo i g

US 2021/0272349 Al

< ;
e “
S H
(=]
; _ 0
< 33%4 * ;
2 AA/NdD | ﬁl
73 : ; 11874
= : e STIVD
& “ MYEQ
R A T
= — : :
2 7€12 : vt F

A9/ndd HS0d :
= m ;
2 ; ;
et [ R
) ; m ¥ AR
nm.. : 10bC ﬁf Py

=5 ‘ - 3 ko3 HSOd =B
= ) e
s d«.ﬁw “ T gERe
= SR o (Sluadang
= ; L ONVIAAGD

t P i Y —— t

=% s
<« “
m : 112744 00vzZ
z m st oHol | VAV Xalu3A nesiA - VAVQ X3LYIA



—
“«
3
o GC ‘Old
o
(=3
I~
& ¥i5¢ J ﬂ ¥05¢ 4
Z ONISSIDOYd ONISSIDOYd a1

13Xid _ ﬁ AMLINOID
3 A
s
S €152 J ﬂ £05¢
< ONISSIDOH ONISSIDOYd o
m 13X1d ; ﬁ >Ew§owo
“ EET7 3
m Z152 4 ﬂ 705¢ J
« ONISSIDOYd ; ﬁ ONISSID0Ud o v
o
" 0557 13Xid Emﬁomw _
R 44N89 INVY4
- Ti6¢e J ﬁ 105¢ 4
S ONISSIDOHd ONISSID0YUd .
g 13Xid g ﬁ AY13NO3ID ;
= » T€TC 11G/NdO
=W

V)R 74 J -
VIVa X3LHIA vz ou

F18ISIA & WO

Patent Application



US 2021/0272349 Al

POSITION-BASED RENDERING APPARATUS
AND METHOD FOR MULTI-DIE/GPU
GRAPHICS PROCESSING

BACKGROUND

Field of the Invention

[0001] This invention relates generally to the field of
graphics processors. More particularly, the invention relates
to an apparatus and method for position-based rendering on
a multi-die or multiple-GPU graphics processing.

Description of the Related Art

[0002] As graphics processors scale to larger die sizes, it
is desirable to integrate multiple silicon dies into a single
cohesive unit capable of running a single 3D context in order
to address manufacturability, scalability, and power delivery
problems. Doing this requires solutions for multiple classes
of scalability and interconnect challenges in order to deliver
the best performance on a single 3D application running on
multiple dies.

[0003] Algorithms currently in use which attempt to
address this problem include alternate frame rendering
(AFR) and split frame rendering (SFR) as well as variants of
these approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] A better understanding of the present invention can
be obtained from the following detailed description in
conjunction with the following drawings, in which:

[0005] FIG. 1 is a block diagram of an embodiment of a
computer system with a processor having one or more
processor cores and graphics processors;

[0006] FIG. 2 is a block diagram of one embodiment of a
processor having one or more processor cores, an integrated
memory controller, and an integrated graphics processor;
[0007] FIG. 3 is a block diagram of one embodiment of a
graphics processor which may be a discreet graphics pro-
cessing unit, or may be graphics processor integrated with a
plurality of processing cores;

[0008] FIG. 4 is a block diagram of an embodiment of a
graphics-processing engine for a graphics processor;
[0009] FIG. 5 is a block diagram of another embodiment
of a graphics processor;

[0010] FIG. 6 is a block diagram of thread execution logic
including an array of processing elements;

[0011] FIG. 7 illustrates a graphics processor execution
unit instruction format according to an embodiment;
[0012] FIG. 8 is a block diagram of another embodiment
of a graphics processor which includes a graphics pipeline,
a media pipeline, a display engine, thread execution logic,
and a render output pipeline;

[0013] FIG. 9A is a block diagram illustrating a graphics
processor command format according to an embodiment;
[0014] FIG. 9B is a block diagram illustrating a graphics
processor command sequence according to an embodiment;
[0015] FIG. 10 illustrates exemplary graphics software
architecture for a data processing system according to an
embodiment;

[0016] FIG. 11 illustrates an exemplary IP core develop-
ment system that may be used to manufacture an integrated
circuit to perform operations according to an embodiment;

Sep. 2, 2021

[0017] FIG. 12 illustrates an exemplary system on a chip
integrated circuit that may be fabricated using one or more
IP cores, according to an embodiment;

[0018] FIG. 13 illustrates an exemplary graphics processor
of a system on a chip integrated circuit that may be fabri-
cated using one or more IP cores;

[0019] FIG. 14 illustrates an additional exemplary graph-
ics processor of a system on a chip integrated circuit that
may be fabricated using one or more IP cores;

[0020] FIG. 15 is a block diagram illustrating a computer
system configured to implement one or more aspects of the
embodiments described herein;

[0021] FIG. 16A-16D illustrate a parallel processor com-
ponents, according to an embodiment;

[0022] FIGS. 17A-17B are block diagrams of graphics
multiprocessors, according to embodiments;

[0023] FIG. 18A-18F illustrate an exemplary architecture
in which a plurality of GPUs are communicatively coupled
to a plurality of multi-core processors;

[0024] FIG. 19 illustrates a graphics processing pipeline,
according to an embodiment;

[0025] FIG. 20 illustrates example results showing a per-
centage increase in performance compared to execution on
a single graphics processor;

[0026] FIG. 21 illustrates an example in which work
partitioned across four tiles is not evenly distributed;
[0027] FIG. 22 illustrates one embodiment of a method for
performing position sharing using checkerboard tiles;
[0028] FIG. 23 illustrates an example tile pattern to be
processed by a set of GPUs;

[0029] FIG. 24 illustrates an example allocation of posi-
tion only shading work to generate visible vertex data; and
[0030] FIG. 25 illustrates an example allocation of tile-
based shading work.

DETAILED DESCRIPTION

[0031] In the following description, for the purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of the embodiments of
the invention described below. It will be apparent, however,
to one skilled in the art that the embodiments of the
invention may be practiced without some of these specific
details. In other instances, well-known structures and
devices are shown in block diagram form to avoid obscuring
the underlying principles of the embodiments of the inven-
tion.

Exemplary Graphics Processor Architectures and
Data Types

System Overview

[0032] FIG. 1 is a block diagram of a processing system
100, according to an embodiment. In various embodiments
the system 100 includes one or more processors 102 and one
or more graphics processors 108, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 102 or processor cores 107. In one embodiment, the
system 100 is a processing platform incorporated within a
system-on-a-chip (SoC) integrated circuit for use in mobile,
handheld, or embedded devices.

[0033] An embodiment of system 100 can include, or be
incorporated within a server-based gaming platform, a game



US 2021/0272349 Al

console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 100 is a mobile
phone, smart phone, tablet computing device or mobile
Internet device. Data processing system 100 can also
include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 100 is
a television or set top box device having one or more
processors 102 and a graphical interface generated by one or
more graphics processors 108.

[0034] In some embodiments, the one or more processors
102 each include one or more processor cores 107 to process
instructions which, when executed, perform operations for
system and user software. In some embodiments, each of the
one or more processor cores 107 is configured to process a
specific instruction set 109. In some embodiments, instruc-
tion set 109 may facilitate Complex Instruction Set Com-
puting (CISC), Reduced Instruction Set Computing (RISC),
or computing via a Very Long Instruction Word (VLIW).
Multiple processor cores 107 may each process a different
instruction set 109, which may include instructions to facili-
tate the emulation of other instruction sets. Processor core
107 may also include other processing devices, such a
Digital Signal Processor (DSP).

[0035] In some embodiments, the processor 102 includes
cache memory 104. Depending on the architecture, the
processor 102 can have a single internal cache or multiple
levels of internal cache. In some embodiments, the cache
memory is shared among various components of the pro-
cessor 102. In some embodiments, the processor 102 also
uses an external cache (e.g., a Level-3 (L3) cache or Last
Level Cache (LLC)) (not shown), which may be shared
among processor cores 107 using known cache coherency
techniques. A register file 106 is additionally included in
processor 102 which may include different types of registers
for storing different types of data (e.g., integer registers,
floating point registers, status registers, and an instruction
pointer register). Some registers may be general-purpose
registers, while other registers may be specific to the design
of the processor 102.

[0036] In some embodiments, processor 102 is coupled
with a processor bus 110 to transmit communication signals
such as address, data, or control signals between processor
102 and other components in system 100. In one embodi-
ment the system 100 uses an exemplary ‘hub’ system
architecture, including a memory controller hub 116 and an
Input Output (/O) controller hub 130. A memory controller
hub 116 facilitates communication between a memory
device and other components of system 100, while an /O
Controller Hub (ICH) 130 provides connections to 1/O
devices via a local I/O bus. In one embodiment, the logic of
the memory controller hub 116 is integrated within the
processor.

[0037] Memory device 120 can be a dynamic random
access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, phase-
change memory device, or some other memory device
having suitable performance to serve as process memory. In
one embodiment the memory device 120 can operate as
system memory for the system 100, to store data 122 and
instructions 121 for use when the one or more processors
102 executes an application or process. Memory controller

Sep. 2, 2021

hub 116 also couples with an optional external graphics
processor 112, which may communicate with the one or
more graphics processors 108 in processors 102 to perform
graphics and media operations.

[0038] In some embodiments, ICH 130 enables peripher-
als to connect to memory device 120 and processor 102 via
a high-speed 1/O bus. The I/O peripherals include, but are
not limited to, an audio controller 146, a firmware interface
128, a wireless transceiver 126 (e.g., Wi-Fi, Bluetooth), a
data storage device 124 (e.g., hard disk drive, flash memory,
etc.), and a legacy 1/O controller 140 for coupling legacy
(e.g., Personal System 2 (PS/2)) devices to the system. One
or more Universal Serial Bus (USB) controllers 142 connect
input devices, such as keyboard and mouse 144 combina-
tions. A network controller 134 may also couple with ICH
130. In some embodiments, a high-performance network
controller (not shown) couples with processor bus 110. It
will be appreciated that the system 100 shown is exemplary
and not limiting, as other types of data processing systems
that are differently configured may also be used. For
example, the /O controller hub 130 may be integrated
within the one or more processor 102, or the memory
controller hub 116 and I/O controller hub 130 may be
integrated into a discreet external graphics processor, such
as the external graphics processor 112.

[0039] FIG. 2 is a block diagram of an embodiment of a
processor 200 having one or more processor cores 202A-
202N, an integrated memory controller 214, and an inte-
grated graphics processor 208. Those elements of FIG. 2
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 200 can include additional
cores up to and including additional core 202N represented
by the dashed lined boxes. Each of processor cores 202A-
202N includes one or more internal cache units 204 A-204N.
In some embodiments each processor core also has access to
one or more shared cached units 206.

[0040] The internal cache units 204A-204N and shared
cache units 206 represent a cache memory hierarchy within
the processor 200. The cache memory hierarchy may include
at least one level of instruction and data cache within each
processor core and one or more levels of shared mid-level
cache, such as a Level 2 (1.2), Level 3 (L3), Level 4 (L4),
or other levels of cache, where the highest level of cache
before external memory is classified as the LLC. In some
embodiments, cache coherency logic maintains coherency
between the various cache units 206 and 204A-204N.
[0041] In some embodiments, processor 200 may also
include a set of one or more bus controller units 216 and a
system agent core 210. The one or more bus controller units
216 manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 210 provides management
functionality for the various processor components. In some
embodiments, system agent core 210 includes one or more
integrated memory controllers 214 to manage access to
various external memory devices (not shown).

[0042] In some embodiments, one or more of the proces-
sor cores 202A-202N include support for simultaneous
multi-threading. In such embodiment, the system agent core
210 includes components for coordinating and operating
cores 202A-202N during multi-threaded processing. System
agent core 210 may additionally include a power control unit



US 2021/0272349 Al

(PCU), which includes logic and components to regulate the
power state of processor cores 202A-202N and graphics
processor 208.

[0043] In some embodiments, processor 200 additionally
includes graphics processor 208 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 208 couples with the set of shared cache units 206,
and the system agent core 210, including the one or more
integrated memory controllers 214. In some embodiments, a
display controller 211 is coupled with the graphics processor
208 to drive graphics processor output to one or more
coupled displays. In some embodiments, display controller
211 may be a separate module coupled with the graphics
processor via at least one interconnect, or may be integrated
within the graphics processor 208 or system agent core 210.
[0044] In some embodiments, a ring based interconnect
unit 212 is used to couple the internal components of the
processor 200. However, an alternative interconnect unit
may be used, such as a point-to-point interconnect, a
switched interconnect, or other techniques, including tech-
niques well known in the art. In some embodiments, graph-
ics processor 208 couples with the ring interconnect 212 via
an I/O link 213.

[0045] The exemplary I/O link 213 represents at least one
of multiple varieties of /O interconnects, including an on
package 1/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 218, such as an eDRAM
module. In some embodiments, each of the processor cores
202A-202N and graphics processor 208 use embedded
memory modules 218 as a shared Last Level Cache.
[0046] Insome embodiments, processor cores 202A-202N
are homogenous cores executing the same instruction set
architecture. In another embodiment, processor cores 202A-
202N are heterogeneous in terms of instruction set archi-
tecture (ISA), where one or more of processor cores 202A-
202N execute a first instruction set, while at least one of the
other cores executes a subset of the first instruction set or a
different instruction set. In one embodiment processor cores
202A-202N are heterogeneous in terms of microarchitec-
ture, where one or more cores having a relatively higher
power consumption couple with one or more power cores
having a lower power consumption. Additionally, processor
200 can be implemented on one or more chips or as an SoC
integrated circuit having the illustrated components, in addi-
tion to other components.

[0047] FIG. 3 is a block diagram of a graphics processor
300, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores. In some embodiments, the graphics pro-
cessor communicates via a memory mapped /O interface to
registers on the graphics processor and with commands
placed into the processor memory. In some embodiments,
graphics processor 300 includes a memory interface 314 to
access memory. Memory interface 314 can be an interface to
local memory, one or more internal caches, one or more
shared external caches, and/or to system memory.

[0048] In some embodiments, graphics processor 300 also
includes a display controller 302 to drive display output data
to a display device 320. Display controller 302 includes
hardware for one or more overlay planes for the display and
composition of multiple layers of video or user interface
elements. In some embodiments, graphics processor 300
includes a video codec engine 306 to encode, decode, or

Sep. 2, 2021

transcode media to, from, or between one or more media
encoding formats, including, but not limited to Moving
Picture Experts Group (MPEG) formats such as MPEG-2,
Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M/VC-1, and Joint Pho-
tographic Experts Group (JPEG) formats such as JPEG, and
Motion JPEG (MJPEG) formats.

[0049] In some embodiments, graphics processor 300
includes a block image transfer (BLIT) engine 304 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in
one embodiment, 2D graphics operations are performed
using one or more components of graphics processing
engine (GPE) 310. In some embodiments, GPE 310 is a
compute engine for performing graphics operations, includ-
ing three-dimensional (3D) graphics operations and media
operations.

[0050] In some embodiments, GPE 310 includes a 3D
pipeline 312 for performing 3D operations, such as render-
ing three-dimensional images and scenes using processing
functions that act upon 3D primitive shapes (e.g., rectangle,
triangle, etc.). The 3D pipeline 312 includes programmable
and fixed function elements that perform various tasks
within the element and/or spawn execution threads to a
3D/Media sub-system 315. While 3D pipeline 312 can be
used to perform media operations, an embodiment of GPE
310 also includes a media pipeline 316 that is specifically
used to perform media operations, such as video post-
processing and image enhancement.

[0051] Insomeembodiments, media pipeline 316 includes
fixed function or programmable logic units to perform one
or more specialized media operations, such as video decode
acceleration, video de-interlacing, and video encode accel-
eration in place of, or on behalf of video codec engine 306.
In some embodiments, media pipeline 316 additionally
includes a thread spawning unit to spawn threads for execu-
tion on 3D/Media sub-system 315. The spawned threads
perform computations for the media operations on one or
more graphics execution units included in 3D/Media sub-
system 315.

[0052] In some embodiments, 3D/Media subsystem 315
includes logic for executing threads spawned by 3D pipeline
312 and media pipeline 316. In one embodiment, the pipe-
lines send thread execution requests to 3D/Media subsystem
315, which includes thread dispatch logic for arbitrating and
dispatching the various requests to available thread execu-
tion resources. The execution resources include an array of
graphics execution units to process the 3D and media
threads. In some embodiments, 3D/Media subsystem 315
includes one or more internal caches for thread instructions
and data. In some embodiments, the subsystem also includes
shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

Graphics Processing Engine

[0053] FIG. 4 is a block diagram of a graphics processing
engine 410 of a graphics processor in accordance with some
embodiments. In one embodiment, the graphics processing
engine (GPE) 410 is a version of the GPE 310 shown in FIG.
3. Elements of FIG. 4 having the same reference numbers (or
names) as the elements of any other figure herein can operate
or function in any manner similar to that described else-



US 2021/0272349 Al

where herein, but are not limited to such. For example, the
3D pipeline 312 and media pipeline 316 of FIG. 3 are
illustrated. The media pipeline 316 is optional in some
embodiments of the GPE 410 and may not be explicitly
included within the GPE 410. For example and in at least
one embodiment, a separate media and/or image processor
is coupled to the GPE 410.

[0054] In some embodiments, GPE 410 couples with or
includes a command streamer 403, which provides a com-
mand stream to the 3D pipeline 312 and/or media pipelines
316. In some embodiments, command streamer 403 is
coupled with memory, which can be system memory, or one
or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 403
receives commands from the memory and sends the com-
mands to 3D pipeline 312 and/or media pipeline 316. The
commands are directives fetched from a ring buffer, which
stores commands for the 3D pipeline 312 and media pipeline
316. In one embodiment, the ring buffer can additionally
include batch command buffers storing batches of multiple
commands. The commands for the 3D pipeline 312 can also
include references to data stored in memory, such as but not
limited to vertex and geometry data for the 3D pipeline 312
and/or image data and memory objects for the media pipe-
line 316. The 3D pipeline 312 and media pipeline 316
process the commands and data by performing operations
via logic within the respective pipelines or by dispatching
one or more execution threads to a graphics core array 414.
[0055] In various embodiments the 3D pipeline 312 can
execute one or more shader programs, such as vertex shad-
ers, geometry shaders, pixel shaders, fragment shaders,
compute shaders, or other shader programs, by processing
the instructions and dispatching execution threads to the
graphics core array 414. The graphics core array 414 pro-
vides a unified block of execution resources. Multi-purpose
execution logic (e.g., execution units) within the graphic
core array 414 includes support for various 3D API shader
languages and can execute multiple simultaneous execution
threads associated with multiple shaders.

[0056] In some embodiments the graphics core array 414
also includes execution logic to perform media functions,
such as video and/or image processing. In one embodiment,
the execution units additionally include general-purpose
logic that is programmable to perform parallel general
purpose computational operations, in addition to graphics
processing operations. The general purpose logic can per-
form processing operations in parallel or in conjunction with
general purpose logic within the processor core(s) 107 of
FIG. 1 or core 202A-202N as in FIG. 2.

[0057] Output data generated by threads executing on the
graphics core array 414 can output data to memory in a
unified return buffer (URB) 418. The URB 418 can store
data for multiple threads. In some embodiments the URB
418 may be used to send data between different threads
executing on the graphics core array 414. In some embodi-
ments the URB 418 may additionally be used for synchro-
nization between threads on the graphics core array and
fixed function logic within the shared function logic 420.

[0058] In some embodiments, graphics core array 414 is
scalable, such that the array includes a variable number of
graphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 410. In one embodiment the execution resources are

Sep. 2, 2021

dynamically scalable, such that execution resources may be
enabled or disabled as needed.

[0059] The graphics core array 414 couples with shared
function logic 420 that includes multiple resources that are
shared between the graphics cores in the graphics core array.
The shared functions within the shared function logic 420
are hardware logic units that provide specialized supple-
mental functionality to the graphics core array 414. In
various embodiments, shared function logic 420 includes
but is not limited to sampler 421, math 422, and inter-thread
communication (ITC) 423 logic. Additionally, some
embodiments implement one or more cache(s) 425 within
the shared function logic 420. A shared function is imple-
mented where the demand for a given specialized function
is insufficient for inclusion within the graphics core array
414. Instead a single instantiation of that specialized func-
tion is implemented as a stand-alone entity in the shared
function logic 420 and shared among the execution
resources within the graphics core array 414. The precise set
of functions that are shared between the graphics core array
414 and included within the graphics core array 414 varies
between embodiments.

[0060] FIG. 5 is a block diagram of another embodiment
of a graphics processor 500. Elements of FIG. 5 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0061] In some embodiments, graphics processor 500
includes a ring interconnect 502, a pipeline front-end 504, a
media engine 537, and graphics cores 580A-580N. In some
embodiments, ring interconnect 502 couples the graphics
processor to other processing units, including other graphics
processors or one or more general-purpose processor cores.
In some embodiments, the graphics processor is one of many
processors integrated within a multi-core processing system.
[0062] In some embodiments, graphics processor 500
receives batches of commands via ring interconnect 502.
The incoming commands are interpreted by a command
streamer 503 in the pipeline front-end 504. In some embodi-
ments, graphics processor 500 includes scalable execution
logic to perform 3D geometry processing and media pro-
cessing via the graphics core(s) 580A-580N. For 3D geom-
etry processing commands, command streamer 503 supplies
commands to geometry pipeline 536. For at least some
media processing commands, command streamer 503 sup-
plies the commands to a video front end 534, which couples
with a media engine 537. In some embodiments, media
engine 537 includes a Video Quality Engine (VQE) 530 for
video and image post-processing and a multi-format encode/
decode (MFX) 533 engine to provide hardware-accelerated
media data encode and decode. In some embodiments,
geometry pipeline 536 and media engine 537 each generate
execution threads for the thread execution resources pro-
vided by at least one graphics core 580A.

[0063] In some embodiments, graphics processor 500
includes scalable thread execution resources featuring
modular cores 580A-580N (sometimes referred to as core
slices), each having multiple sub-cores 550A-550N, 560A-
560N (sometimes referred to as core sub-slices). In some
embodiments, graphics processor 500 can have any number
of graphics cores 580A through 580N. In some embodi-
ments, graphics processor 500 includes a graphics core
580A having at least a first sub-core 550A and a second



US 2021/0272349 Al

sub-core 560A. In other embodiments, the graphics proces-
sor is a low power processor with a single sub-core (e.g.,
550A). In some embodiments, graphics processor 500
includes multiple graphics cores 580A-580N, each including
a set of first sub-cores 550A-550N and a set of second
sub-cores 560A-560N. Each sub-core in the set of first
sub-cores 550A-550N includes at least a first set of execu-
tion units 552A-552N and media/texture samplers 554A-
554N. Each sub-core in the set of second sub-cores 560A-
560N includes at least a second set of execution units
562A-562N and samplers 564A-564N. In some embodi-
ments, each sub-core 550A-550N, 560A-560N shares a set
of shared resources 570A-570N. In some embodiments, the
shared resources include shared cache memory and pixel
operation logic. Other shared resources may also be
included in the various embodiments of the graphics pro-
Cessor.

Execution Units

[0064] FIG. 6 illustrates thread execution logic 600
including an array of processing elements employed in some
embodiments of'a GPE. Elements of FIG. 6 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such.

[0065] In some embodiments, thread execution logic 600
includes a shader processor 602, a thread dispatcher 604,
instruction cache 606, a scalable execution unit array includ-
ing a plurality of execution units 608 A-608N, a sampler 610,
a data cache 612, and a data port 614. In one embodiment the
scalable execution unit array can dynamically scale by
enabling or disabling one or more execution units (e.g., any
of execution unit 608A, 608B, 608C, 608D, through 608N-1
and 608N) based on the computational requirements of a
workload. In one embodiment the included components are
interconnected via an interconnect fabric that links to each
of the components. In some embodiments, thread execution
logic 600 includes one or more connections to memory, such
as system memory or cache memory, through one or more
of instruction cache 606, data port 614, sampler 610, and
execution units 608A-608N. In some embodiments, each
execution unit (e.g. 608A) is a stand-alone programmable
general purpose computational unit that is capable of execut-
ing multiple simultaneous hardware threads while process-
ing multiple data elements in parallel for each thread. In
various embodiments, the array of execution units 608A-
608N is scalable to include any number individual execution
units.

[0066] In some embodiments, the execution units 608A-
608N are primarily used to execute shader programs. A
shader processor 602 can process the various shader pro-
grams and dispatch execution threads associated with the
shader programs via a thread dispatcher 604. In one embodi-
ment the thread dispatcher includes logic to arbitrate thread
initiation requests from the graphics and media pipelines and
instantiate the requested threads on one or more execution
unit in the execution units 608A-608N. For example, the
geometry pipeline (e.g., 536 of FIG. 5) can dispatch vertex,
tessellation, or geometry shaders to the thread execution
logic 600 (FIG. 6) for processing. In some embodiments,
thread dispatcher 604 can also process runtime thread
spawning requests from the executing shader programs.

Sep. 2, 2021

[0067] In some embodiments, the execution units 608A-
608N support an instruction set that includes native support
for many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Each of the execution units 608A-608N is capable of
multi-issue single instruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an efficient execu-
tion environment in the face of higher latency memory
accesses. Each hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution is multi-issue per clock
to pipelines capable of integer, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 608A-608N causes a waiting thread to sleep
until the requested data has been returned. While the waiting
thread is sleeping, hardware resources may be devoted to
processing other threads. For example, during a delay asso-
ciated with a vertex shader operation, an execution unit can
perform operations for a pixel shader, fragment shader, or
another type of shader program, including a different vertex
shader.

[0068] Each execution unit in execution units 608 A-608N
operates on arrays of data elements. The number of data
elements is the “execution size,” or the number of channels
for the instruction. An execution channel is a logical unit of
execution for data element access, masking, and flow control
within instructions. The number of channels may be inde-
pendent of the number of physical Arithmetic Logic Units
(ALUs) or Floating Point Units (FPUs) for a particular
graphics processor. In some embodiments, execution units
608A-608N support integer and floating-point data types.

[0069] The execution unit instruction set includes SIMD
instructions. The various data elements can be stored as a
packed data type in a register and the execution unit will
process the various elements based on the data size of the
elements. For example, when operating on a 256-bit wide
vector, the 256 bits of the vector are stored in a register and
the execution unit operates on the vector as four separate
64-bit packed data elements (Quad-Word (QW) size data
elements), eight separate 32-bit packed data elements
(Double Word (DW) size data elements), sixteen separate
16-bit packed data elements (Word (W) size data elements),
or thirty-two separate 8-bit data elements (byte (B) size data
elements). However, different vector widths and register
sizes are possible.

[0070] One or more internal instruction caches (e.g., 606)
are included in the thread execution logic 600 to cache
thread instructions for the execution units. In some embodi-
ments, one or more data caches (e.g., 612) are included to
cache thread data during thread execution. In some embodi-
ments, a sampler 610 is included to provide texture sampling
for 3D operations and media sampling for media operations.
In some embodiments, sampler 610 includes specialized
texture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.



US 2021/0272349 Al

[0071] During execution, the graphics and media pipelines
send thread initiation requests to thread execution logic 600
via thread spawning and dispatch logic. Once a group of
geometric objects has been processed and rasterized into
pixel data, pixel processor logic (e.g., pixel shader logic,
fragment shader logic, etc.) within the shader processor 602
is invoked to further compute output information and cause
results to be written to output surfaces (e.g., color buffers,
depth buffers, stencil buffers, etc.). In some embodiments, a
pixel shader or fragment shader calculates the values of the
various vertex attributes that are to be interpolated across the
rasterized object. In some embodiments, pixel processor
logic within the shader processor 602 then executes an
application programming interface (API)-supplied pixel or
fragment shader program. To execute the shader program,
the shader processor 602 dispatches threads to an execution
unit (e.g., 608A) via thread dispatcher 604. In some embodi-
ments, pixel shader 602 uses texture sampling logic in the
sampler 610 to access texture data in texture maps stored in
memory. Arithmetic operations on the texture data and the
input geometry data compute pixel color data for each
geometric fragment, or discards one or more pixels from
further processing.

[0072] In some embodiments, the data port 614 provides
a memory access mechanism for the thread execution logic
600 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 614 includes or couples to one or more cache
memories (e.g., data cache 612) to cache data for memory
access via the data port.

[0073] FIG. 7 is a block diagram illustrating a graphics
processor instruction formats 700 according to some
embodiments. In one or more embodiment, the graphics
processor execution units support an instruction set having
instructions in multiple formats. The solid lined boxes
illustrate the components that are generally included in an
execution unit instruction, while the dashed lines include
components that are optional or that are only included in a
sub-set of the instructions. In some embodiments, instruc-
tion format 700 described and illustrated are macro-instruc-
tions, in that they are instructions supplied to the execution
unit, as opposed to micro-operations resulting from instruc-
tion decode once the instruction is processed.

[0074] In some embodiments, the graphics processor
execution units natively support instructions in a 128-bit
instruction format 710. A 64-bit compacted instruction for-
mat 730 is available for some instructions based on the
selected instruction, instruction options, and number of
operands. The native 128-bit instruction format 710 pro-
vides access to all instruction options, while some options
and operations are restricted in the 64-bit instruction format
730. The native instructions available in the 64-bit instruc-
tion format 730 vary by embodiment. In some embodiments,
the instruction is compacted in part using a set of index
values in an index field 713. The execution unit hardware
references a set of compaction tables based on the index
values and uses the compaction table outputs to reconstruct
a native instruction in the 128-bit instruction format 710.
[0075] For each format, instruction opcode 712 defines the
operation that the execution unit is to perform. The execu-
tion units execute each instruction in parallel across the
multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-

Sep. 2, 2021

resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 714 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit instruction format 710 an exec-size field 716 limits
the number of data channels that will be executed in parallel.
In some embodiments, exec-size field 716 is not available
for use in the 64-bit compact instruction format 730.
[0076] Some execution unit instructions have up to three
operands including two source operands, src0 720, srcl 722,
and one destination 718. In some embodiments, the execu-
tion units support dual destination instructions, where one of
the destinations is implied. Data manipulation instructions
can have a third source operand (e.g., SRC2 724), where the
instruction opcode 712 determines the number of source
operands. An instruction’s last source operand can be an
immediate (e.g., hard-coded) value passed with the instruc-
tion.

[0077] In some embodiments, the 128-bit instruction for-
mat 710 includes an access/address mode field 726 speci-
fying, for example, whether direct register addressing mode
or indirect register addressing mode is used. When direct
register addressing mode is used, the register address of one
or more operands is directly provided by bits in the instruc-
tion.

[0078] In some embodiments, the 128-bit instruction for-
mat 710 includes an access/address mode field 726, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode is used to
define a data access alignment for the instruction. Some
embodiments support access modes including a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines the
access alignment of the instruction operands. For example,
when in a first mode, the instruction may use byte-aligned
addressing for source and destination operands and when in
a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

[0079] In one embodiment, the address mode portion of
the access/address mode field 726 determines whether the
instruction is to use direct or indirect addressing. When
direct register addressing mode is used bits in the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode is used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field in the instruction.

[0080] In some embodiments instructions are grouped
based on opcode 712 bit-fields to simplify Opcode decode
740. For an 8-bit opcode, bits 4, 5, and 6 allow the execution
unit to determine the type of opcode. The precise opcode
grouping shown is merely an example. In some embodi-
ments, a move and logic opcode group 742 includes data
movement and logic instructions (e.g., move (mov), com-
pare (cmp)). In some embodiments, move and logic group
742 shares the five most significant bits (MSB), where move
(mov) instructions are in the form of 0000xxxxb and logic
instructions are in the form of 0001xxxxb. A flow control
instruction group 744 (e.g., call, jump (jmp)) includes
instructions in the form of 0010xxxxb (e.g., 0x20). A
miscellaneous instruction group 746 includes a mix of
instructions, including synchronization instructions (e.g.,



US 2021/0272349 Al

wait, send) in the form of 0011xxxxb (e.g., 0x30). A parallel
math instruction group 748 includes component-wise arith-
metic instructions (e.g., add, multiply (mul)) in the form of
0100xxxxb (e.g., 0x40). The parallel math group 748 per-
forms the arithmetic operations in parallel across data chan-
nels. The vector math group 750 includes arithmetic instruc-
tions (e.g., dp4) in the form of 0101xxxxb (e.g., 0x50). The
vector math group performs arithmetic such as dot product
calculations on vector operands.

Graphics Pipeline

[0081] FIG. 8 is a block diagram of another embodiment
of a graphics processor 800. Elements of FIG. 8 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0082] In some embodiments, graphics processor 800
includes a graphics pipeline 820, a media pipeline 830, a
display engine 840, thread execution logic 850, and a render
output pipeline 870. In some embodiments, graphics pro-
cessor 800 is a graphics processor within a multi-core
processing system that includes one or more general purpose
processing cores. The graphics processor is controlled by
register writes to one or more control registers (not shown)
or via commands issued to graphics processor 800 via a ring
interconnect 802. In some embodiments, ring interconnect
802 couples graphics processor 800 to other processing
components, such as other graphics processors or general-
purpose processors. Commands from ring interconnect 802
are interpreted by a command streamer 803, which supplies
instructions to individual components of graphics pipeline
820 or media pipeline 830.

[0083] In some embodiments, command streamer 803
directs the operation of a vertex fetcher 805 that reads vertex
data from memory and executes vertex-processing com-
mands provided by command streamer 803. In some
embodiments, vertex fetcher 805 provides vertex data to a
vertex shader 807, which performs coordinate space trans-
formation and lighting operations to each vertex. In some
embodiments, vertex fetcher 805 and vertex shader 807
execute vertex-processing instructions by dispatching
execution threads to execution units 852A-852B via a thread
dispatcher 831.

[0084] In some embodiments, execution units 852A-852B
are an array of vector processors having an instruction set for
performing graphics and media operations. In some embodi-
ments, execution units 852A-852B have an attached L1
cache 851 that is specific for each array or shared between
the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that is partitioned to
contain data and instructions in different partitions.

[0085] In some embodiments, graphics pipeline 820
includes tessellation components to perform hardware-ac-
celerated tessellation of 3D objects. In some embodiments,
a programmable hull shader 811 configures the tessellation
operations. A programmable domain shader 817 provides
back-end evaluation of tessellation output. A tessellator 813
operates at the direction of hull shader 811 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that is provided
as input to graphics pipeline 820. In some embodiments, if

Sep. 2, 2021

tessellation is not used, tessellation components (e.g., hull
shader 811, tessellator 813, and domain shader 817) can be
bypassed.

[0086] In some embodiments, complete geometric objects
can be processed by a geometry shader 819 via one or more
threads dispatched to execution units 852A-852B, or can
proceed directly to the clipper 829. In some embodiments,
the geometry shader operates on entire geometric objects,
rather than vertices or patches of vertices as in previous
stages of the graphics pipeline. If the tessellation is disabled
the geometry shader 819 receives input from the vertex
shader 807. In some embodiments, geometry shader 819 is
programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled.

[0087] Before rasterization, a clipper 829 processes vertex
data. The clipper 829 may be a fixed function clipper or a
programmable clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test
component 873 in the render output pipeline 870 dispatches
pixel shaders to convert the geometric objects into their per
pixel representations. In some embodiments, pixel shader
logic is included in thread execution logic 850. In some
embodiments, an application can bypass the rasterizer and
depth test component 873 and access un-rasterized vertex
data via a stream out unit 823.

[0088] The graphics processor 800 has an interconnect
bus, interconnect fabric, or some other interconnect mecha-
nism that allows data and message passing amongst the
major components of the processor. In some embodiments,
execution units 852A-852B and associated cache(s) 851,
texture and media sampler 854, and texture/sampler cache
858 interconnect via a data port 856 to perform memory
access and communicate with render output pipeline com-
ponents of the processor. In some embodiments, sampler
854, caches 851, 858 and execution units 852A-852B each
have separate memory access paths.

[0089] In some embodiments, render output pipeline 870
contains a rasterizer and depth test component 873 that
converts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
878 and depth cache 879 are also available in some embodi-
ments. A pixel operations component 877 performs pixel-
based operations on the data, though in some instances, pixel
operations associated with 2D operations (e.g. bit block
image transfers with blending) are performed by the 2D
engine 841, or substituted at display time by the display
controller 843 using overlay display planes. In some
embodiments, a shared L3 cache 875 is available to all
graphics components, allowing the sharing of data without
the use of main system memory.

[0090] In some embodiments, graphics processor media
pipeline 830 includes a media engine 837 and a video front
end 834. In some embodiments, video front end 834 receives
pipeline commands from the command streamer 803. In
some embodiments, media pipeline 830 includes a separate
command streamer. In some embodiments, video front-end
834 processes media commands before sending the com-
mand to the media engine 837. In some embodiments, media
engine 837 includes thread spawning functionality to spawn
threads for dispatch to thread execution logic 850 via thread
dispatcher 831.



US 2021/0272349 Al

[0091] In some embodiments, graphics processor 800
includes a display engine 840. In some embodiments, dis-
play engine 840 is external to processor 800 and couples
with the graphics processor via the ring interconnect 802, or
some other interconnect bus or fabric. In some embodi-
ments, display engine 840 includes a 2D engine 841 and a
display controller 843. In some embodiments, display
engine 840 contains special purpose logic capable of oper-
ating independently of the 3D pipeline. In some embodi-
ments, display controller 843 couples with a display device
(not shown), which may be a system integrated display
device, as in a laptop computer, or an external display device
attached via a display device connector.

[0092] In some embodiments, graphics pipeline 820 and
media pipeline 830 are configurable to perform operations
based on multiple graphics and media programming inter-
faces and are not specific to any one application program-
ming interface (API). In some embodiments, driver software
for the graphics processor translates API calls that are
specific to a particular graphics or media library into com-
mands that can be processed by the graphics processor. In
some embodiments, support is provided for the Open Graph-
ics Library (OpenGL), Open Computing Language
(OpenCL), and/or Vulkan graphics and compute API, all
from the Khronos Group. In some embodiments, support
may also be provided for the Direct3D library from the
Microsoft Corporation. In some embodiments, a combina-
tion of these libraries may be supported. Support may also
be provided for the Open Source Computer Vision Library
(OpenCV). A future API with a compatible 3D pipeline
would also be supported if a mapping can be made from the
pipeline of the future API to the pipeline of the graphics
processor.

Graphics Pipeline Programming

[0093] FIG. 9A is a block diagram illustrating a graphics
processor command format 900 according to some embodi-
ments. FIG. 9B is a block diagram illustrating a graphics
processor command sequence 910 according to an embodi-
ment. The solid lined boxes in FIG. 9A illustrate the com-
ponents that are generally included in a graphics command
while the dashed lines include components that are optional
or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 900 of FIG. 9A includes data fields to identify a target
client 902 of the command, a command operation code
(opcode) 904, and the relevant data 906 for the command. A
sub-opcode 905 and a command size 908 are also included
in some commands.

[0094] In some embodiments, client 902 specifies the
client unit of the graphics device that processes the com-
mand data. In some embodiments, a graphics processor
command parser examines the client field of each command
to condition the further processing of the command and
route the command data to the appropriate client unit. In
some embodiments, the graphics processor client units
include a memory interface unit, a render unit, a 2D unit, a
3D unit, and a media unit. Each client unit has a correspond-
ing processing pipeline that processes the commands. Once
the command is received by the client unit, the client unit
reads the opcode 904 and, if present, sub-opcode 905 to
determine the operation to perform. The client unit performs
the command using information in data field 906. For some
commands an explicit command size 908 is expected to

Sep. 2, 2021

specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least
some of the commands based on the command opcode. In
some embodiments commands are aligned via multiples of
a double word.

[0095] The flow diagram in FIG. 9B shows an exemplary
graphics processor command sequence 910. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be issued as batch of commands in a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

[0096] Insomeembodiments, the graphics processor com-
mand sequence 910 may begin with a pipeline flush com-
mand 912 to cause any active graphics pipeline to complete
the currently pending commands for the pipeline. In some
embodiments, the 3D pipeline 922 and the media pipeline
924 do not operate concurrently. The pipeline flush is
performed to cause the active graphics pipeline to complete
any pending commands. In response to a pipeline flush, the
command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that is
marked ‘dirty’ can be flushed to memory. In some embodi-
ments, pipeline flush command 912 can be used for pipeline
synchronization or before placing the graphics processor
into a low power state.

[0097] In some embodiments, a pipeline select command
913 is used when a command sequence requires the graphics
processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 913 is required
only once within an execution context before issuing pipe-
line commands unless the context is to issue commands for
both pipelines. In some embodiments, a pipeline flush
command 912 is required immediately before a pipeline
switch via the pipeline select command 913.

[0098] Insome embodiments, a pipeline control command
914 configures a graphics pipeline for operation and is used
to program the 3D pipeline 922 and the media pipeline 924.
In some embodiments, pipeline control command 914 con-
figures the pipeline state for the active pipeline. In one
embodiment, the pipeline control command 914 is used for
pipeline synchronization and to clear data from one or more
cache memories within the active pipeline before processing
a batch of commands.

[0099] In some embodiments, commands for the return
buffer state 916 are used to configure a set of return buffers
for the respective pipelines to write data. Some pipeline
operations require the allocation, selection, or configuration
of'one or more return buffers into which the operations write
intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buffers
to store output data and to perform cross thread communi-
cation. In some embodiments, configuring the return buffer
state 916 includes selecting the size and number of return
buffers to use for a set of pipeline operations.



US 2021/0272349 Al

[0100] The remaining commands in the command
sequence differ based on the active pipeline for operations.
Based on a pipeline determination 920, the command
sequence is tailored to the 3D pipeline 922 beginning with
the 3D pipeline state 930 or the media pipeline 924 begin-
ning at the media pipeline state 940.

[0101] The commands to configure the 3D pipeline state
930 include 3D state setting commands for vertex buffer
state, vertex element state, constant color state, depth buffer
state, and other state variables that are to be configured
before 3D primitive commands are processed. The values of
these commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 930 commands are also able to selectively disable or
bypass certain pipeline elements if those elements will not
be used.

[0102] Insome embodiments, 3D primitive 932 command
is used to submit 3D primitives to be processed by the 3D
pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 932
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 932 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 932
command is used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 922 dispatches shader execution threads to graphics
processor execution units.

[0103] Insome embodiments, 3D pipeline 922 is triggered
via an execute 934 command or event. In some embodi-
ments, a register write triggers command execution. In some
embodiments execution is triggered via a ‘go’ or ‘kick’
command in the command sequence. In one embodiment,
command execution is triggered using a pipeline synchro-
nization command to flush the command sequence through
the graphics pipeline. The 3D pipeline will perform geom-
etry processing for the 3D primitives. Once operations are
complete, the resulting geometric objects are rasterized and
the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.
[0104] Insomeembodiments, the graphics processor com-
mand sequence 910 follows the media pipeline 924 path
when performing media operations. In general, the specific
use and manner of programming for the media pipeline 924
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

[0105] In some embodiments, media pipeline 924 is con-
figured in a similar manner as the 3D pipeline 922. A set of
commands to configure the media pipeline state 940 are
dispatched or placed into a command queue before the
media object commands 942. In some embodiments, com-
mands for the media pipeline state 940 include data to

Sep. 2, 2021

configure the media pipeline elements that will be used to
process the media objects. This includes data to configure
the video decode and video encode logic within the media
pipeline, such as encode or decode format. In some embodi-
ments, commands for the media pipeline state 940 also
support the use of one or more pointers to “indirect” state
elements that contain a batch of state settings.

[0106] In some embodiments, media object commands
942 supply pointers to media objects for processing by the
media pipeline. The media objects include memory buffers
containing video data to be processed. In some embodi-
ments, all media pipeline states must be valid before issuing
a media object command 942. Once the pipeline state is
configured and media object commands 942 are queued, the
media pipeline 924 is triggered via an execute command 944
or an equivalent execute event (e.g., register write). Output
from media pipeline 924 may then be post processed by
operations provided by the 3D pipeline 922 or the media
pipeline 924. In some embodiments, GPGPU operations are
configured and executed in a similar manner as media
operations.

Graphics Software Architecture

[0107] FIG. 10 illustrates exemplary graphics software
architecture for a data processing system 1000 according to
some embodiments. In some embodiments, software archi-
tecture includes a 3D graphics application 1010, an operat-
ing system 1020, and at least one processor 1030. In some
embodiments, processor 1030 includes a graphics processor
1032 and one or more general-purpose processor core(s)
1034. The graphics application 1010 and operating system
1020 each execute in the system memory 1050 of the data
processing system.

[0108] In some embodiments, 3D graphics application
1010 contains one or more shader programs including
shader instructions 1012. The shader language instructions
may be in a high-level shader language, such as the High
Level Shader Language (HLSL) or the OpenGL Shader
Language (GLSL). The application also includes executable
instructions 1014 in a machine language suitable for execu-
tion by the general-purpose processor core 1034. The appli-
cation also includes graphics objects 1016 defined by vertex
data.

[0109] In some embodiments, operating system 1020 is a
Microsoft® Windows® operating system from the
Microsoft Corporation, a proprietary UNIX-like operating
system, or an open source UNIX-like operating system
using a variant of the Linux kernel. The operating system
1020 can support a graphics API 1022 such as the Direct3D
API, the OpenGL API, or the Vulkan API. When the
Direct3D API is in use, the operating system 1020 uses a
front-end shader compiler 1024 to compile any shader
instructions 1012 in HLSL into a lower-level shader lan-
guage. The compilation may be a just-in-time (JIT) compi-
lation or the application can perform shader pre-compila-
tion. In some embodiments, high-level shaders are compiled
into low-level shaders during the compilation of the 3D
graphics application 1010. In some embodiments, the shader
instructions 1012 are provided in an intermediate form, such
as a version of the Standard Portable Intermediate Repre-
sentation (SPIR) used by the Vulkan API.

[0110] In some embodiments, user mode graphics driver
1026 contains a back-end shader compiler 1027 to convert
the shader instructions 1012 into a hardware specific repre-



US 2021/0272349 Al

sentation. When the OpenGL API is in use, shader instruc-
tions 1012 in the GLSL high-level language are passed to a
user mode graphics driver 1026 for compilation. In some
embodiments, user mode graphics driver 1026 uses operat-
ing system kernel mode functions 1028 to communicate
with a kernel mode graphics driver 1029. In some embodi-
ments, kernel mode graphics driver 1029 communicates
with graphics processor 1032 to dispatch commands and
instructions.

1P Core Implementations

[0111] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine-readable medium which represents and/or defines
logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.
[0112] FIG. 11 is a block diagram illustrating an IP core
development system 1100 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment. The IP core development system 1100 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 1130 can generate a software simulation 1110
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 1110 can be used to
design, test, and verify the behavior of the IP core using a
simulation model 1112. The simulation model 1112 may
include functional, behavioral, and/or timing simulations. A
register transfer level (RTL) design 1115 can then be created
or synthesized from the simulation model 1112. The RTL
design 1115 is an abstraction of the behavior of the inte-
grated circuit that models the flow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 1115, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the initial design and simula-
tion may vary.

[0113] The RTL design 1115 or equivalent may be further
synthesized by the design facility into a hardware model
1120, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP
core design. The IP core design can be stored for delivery to
a 3rd party fabrication facility 1165 using non-volatile
memory 1140 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 1150 or wireless connection 1160. The fabrica-
tion facility 1165 may then fabricate an integrated circuit

Sep. 2, 2021

that is based at least in part on the IP core design. The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

Exemplary System on a Chip Integrated Circuit

[0114] FIGS. 12-14 illustrate exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what is illus-
trated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general purpose processor cores.

[0115] FIG. 12 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 1200 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 1200 includes
one or more application processor(s) 1205 (e.g., processors),
at least one graphics processor 1210, and may additionally
include an image processor 1215 and/or a video processor
1220, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 1200
includes peripheral or bus logic including a USB controller
1225, UART controller 1230, an SPI/SDIO controller 1235,
and an 12S/12C controller 1240. Additionally, the integrated
circuit can include a display device 1245 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 1250 and a mobile industry processor interface
(MIP]) display interface 1255. Storage may be provided by
a flash memory subsystem 1260 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 1265 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 1270.

[0116] FIG. 13 is a block diagram illustrating an exem-
plary graphics processor 1310 of a system on a chip inte-
grated circuit that may be fabricated using one or more IP
cores, according to an embodiment. Graphics processor
1310 can be a variant of the graphics processor 1210 of FIG.
12. Graphics processor 1310 includes a vertex processor
1305 and one or more fragment processor(s) 1315A1315N
(e.g., 1315A, 1315B, 1315C, 1315D, through 1315N-1, and
1315N). Graphics processor 1310 can execute different
shader programs via separate logic, such that the vertex
processor 1305 is optimized to execute operations for vertex
shader programs, while the one or more fragment processor
(s) 1315A-1315N execute fragment (e.g., pixel) shading
operations for fragment or pixel shader programs. The
vertex processor 1305 performs the vertex processing stage
of the 3D graphics pipeline and generates primitives and
vertex data. The fragment processor(s) 1315A-1315N use
the primitive and vertex data generated by the vertex pro-
cessor 1305 to produce a framebuffer that is displayed on a
display device. In one embodiment, the fragment processor
(s) 1315A-1315N are optimized to execute fragment shader
programs as provided for in the OpenGL API, which may be
used to perform similar operations as a pixel shader program
as provided for in the Direct 3D APL

[0117] Graphics processor 1310 additionally includes one
or more memory management units (MMUs) 1320A-1320B,
cache(s) 1325A-1325B, and circuit interconnect(s) 1330A-
1330B. The one or more MMU(s) 1320A-1320B provide for
virtual to physical address mapping for graphics processor
1310, including for the vertex processor 1305 and/or frag-



US 2021/0272349 Al

ment processor(s) 1315A-1315N, which may reference ver-
tex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in the one or more
cache(s) 1325A-1325B. In one embodiment the one or more
MMU(s) 1320A-1320B may be synchronized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
1205, image processor 1215, and/or video processor 1220 of
FIG. 12, such that each processor 1205-1220 can participate
in a shared or unified virtual memory system. The one or
more circuit interconnect(s) 1330A-1330B enable graphics
processor 1310 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

[0118] FIG. 14 is a block diagram illustrating an additional
exemplary graphics processor 1410 of a system on a chip
integrated circuit that may be fabricated using one or more
IP cores, according to an embodiment. Graphics processor
1410 can be a variant of the graphics processor 1210 of FIG.
12. Graphics processor 1410 includes the one or more
MMU(s) 1320A-1320B, cache(s) 1325A-1325B, and circuit
interconnect(s) 1330A-1330B of the integrated circuit 1300
of FIG. 13.

[0119] Graphics processor 1410 includes one or more
shader core(s) 1415A-1415N (e.g., 1415A, 14158, 1415C,
1415D, 1415E, 1415F, through 1315N-1, and 1315N),
which provides for a unified shader core architecture in
which a single core or type or core can execute all types of
programmable shader code, including shader program code
to implement vertex shaders, fragment shaders, and/or com-
pute shaders. The exact number of shader cores present can
vary among embodiments and implementations. Addition-
ally, graphics processor 1410 includes an inter-core task
manager 1405, which acts as a thread dispatcher to dispatch
execution threads to one or more shader core(s) 1415A-
1415N and a tiling unit 1418 to accelerate tiling operations
for tile-based rendering, in which rendering operations for a
scene are subdivided in image space, for example to exploit
local spatial coherence within a scene or to optimize use of
internal caches.

Exemplary Graphics Microarchitectures

[0120] In some embodiments, a graphics processing unit
(GPU) is communicatively coupled to host/processor cores
to accelerate graphics operations, machine-learning opera-
tions, pattern analysis operations, and various general pur-
pose GPU (GPGPU) functions. The GPU may be commu-
nicatively coupled to the host processor/cores over a bus or
another interconnect (e.g., a high-speed interconnect such as
PCle or NVLink). In other embodiments, the GPU may be
integrated on the same package or chip as the cores and
communicatively coupled to the cores over an internal
processor bus/interconnect (i.e., internal to the package or
chip). Regardless of the manner in which the GPU is
connected, the processor cores may allocate work to the
GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

[0121] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing. However, it will be apparent to one of skill in the art that
the embodiments described herein may be practiced without
one or more of these specific details. In other instances,

Sep. 2, 2021

well-known features have not been described to avoid
obscuring the details of the present embodiments.

System Overview

[0122] FIG. 15 is a block diagram illustrating a computing
system 1500 configured to implement one or more aspects of
the embodiments described herein. The computing system
1500 includes a processing subsystem 1501 having one or
more processor(s) 1502 and a system memory 1504 com-
municating via an interconnection path that may include a
memory hub 1505. The memory hub 1505 may be a separate
component within a chipset component or may be integrated
within the one or more processor(s) 1502. The memory hub
1505 couples with an /O subsystem 1511 via a communi-
cation link 1506. The I/O subsystem 1511 includes an 1/O
hub 1507 that can enable the computing system 1500 to
receive input from one or more input device(s) 1508. Addi-
tionally, the I/O hub 1507 can enable a display controller,
which may be included in the one or more processor(s)
1502, to provide outputs to one or more display device(s)
1510A. In one embodiment the one or more display device
(s) 1510 A coupled with the I/O hub 1507 can include a local,
internal, or embedded display device.

[0123] Inone embodiment the processing subsystem 1501
includes one or more parallel processor(s) 1512 coupled to
memory hub 1505 via a bus or other communication link
1513. The communication link 1513 may be one of any
number of standards based communication link technologies
or protocols, such as, but not limited to PCI Express, or may
be a vendor specific communications interface or commu-
nications fabric. In one embodiment the one or more parallel
processor(s) 1512 form a computationally focused parallel
or vector processing system that an include a large number
of processing cores and/or processing clusters, such as a
many integrated core (MIC) processor. In one embodiment
the one or more parallel processor(s) 1512 form a graphics
processing subsystem that can output pixels to one of the one
or more display device(s) 1510A coupled via the /O Hub
1507. The one or more parallel processor(s) 1512 can also
include a display controller and display interface (not
shown) to enable a direct connection to one or more display
device(s) 1510B.

[0124] Within the I/O subsystem 15115, a system storage
unit 1514 can connect to the /O hub 1507 to provide a
storage mechanism for the computing system 1500. An 1/O
switch 1516 can be used to provide an interface mechanism
to enable connections between the 1/0 hub 1507 and other
components, such as a network adapter 1518 and/or wireless
network adapter 1519 that may be integrated into the plat-
form, and various other devices that can be added via one or
more add-in device(s) 1520. The network adapter 1518 can
be an Ethernet adapter or another wired network adapter.
The wireless network adapter 1519 can include one or more
of' a Wi-Fi, Bluetooth, near field communication (NFC), or
other network device that includes one or more wireless
radios.

[0125] The computing system 1500 can include other
components not explicitly shown, including USB or other
port connections, optical storage drives, video capture
devices, and the like, may also be connected to the I/O hub
1507. Communication paths interconnecting the various
components in FIG. 15 may be implemented using any
suitable protocols, such as PCI (Peripheral Component
Interconnect) based protocols (e.g., PCI-Express), or any



US 2021/0272349 Al

other bus or point-to-point communication interfaces and/or
protocol(s), such as the NV-Link high-speed interconnect, or
interconnect protocols known in the art.

[0126] In one embodiment, the one or more parallel pro-
cessor(s) 1512 incorporate circuitry optimized for graphics
and video processing, including, for example, video output
circuitry, and constitutes a graphics processing unit (GPU).
In another embodiment, the one or more parallel processor
(s) 1512 incorporate circuitry optimized for general purpose
processing, while preserving the underlying computational
architecture, described in greater detail herein. In yet another
embodiment, components of the computing system 1500
may be integrated with one or more other system elements
on a single integrated circuit. For example, the one or more
parallel processor(s), 1512 memory hub 1505, processor(s)
1502, and I/O hub 1507 can be integrated into a system on
chip (SoC) integrated circuit. Alternatively, the components
of'the computing system 1500 can be integrated into a single
package to form a system in package (SIP) configuration. In
one embodiment at least a portion of the components of the
computing system 1500 can be integrated into a multi-chip
module (MCM), which can be interconnected with other
multi-chip modules into a modular computing system.
[0127] It will be appreciated that the computing system
1500 shown herein is illustrative and that variations and
modifications are possible. The connection topology, includ-
ing the number and arrangement of bridges, the number of
processor(s) 1502, and the number of parallel processor(s)
1512, may be modified as desired. For instance, in some
embodiments, system memory 1504 is connected to the
processor(s) 1502 directly rather than through a bridge,
while other devices communicate with system memory 1504
via the memory hub 1505 and the processor(s) 1502. In other
alternative topologies, the parallel processor(s) 1512 are
connected to the I/0 hub 1507 or directly to one of the one
or more processor(s) 1502, rather than to the memory hub
1505. In other embodiments, the I/O hub 1507 and memory
hub 1505 may be integrated into a single chip. Some
embodiments may include two or more sets of processor(s)
1502 attached via multiple sockets, which can couple with
two or more instances of the parallel processor(s) 1512.
[0128] Some of the particular components shown herein
are optional and may not be included in all implementations
of the computing system 1500. For example, any number of
add-in cards or peripherals may be supported, or some
components may be eliminated. Furthermore, some archi-
tectures may use different terminology for components
similar to those illustrated in FIG. 15. For example, the
memory hub 1505 may be referred to as a Northbridge in
some architectures, while the /O hub 1507 may be referred
to as a Southbridge.

[0129] FIG. 16A illustrates a parallel processor 1600,
according to an embodiment. The various components of the
parallel processor 1600 may be implemented using one or
more integrated circuit devices, such as programmable pro-
cessors, application specific integrated circuits (ASICs), or
field programmable gate arrays (FPGA). The illustrated
parallel processor 1600 is a variant of the one or more
parallel processor(s) 1512 shown in FIG. 15, according to an
embodiment.

[0130] In one embodiment the parallel processor 1600
includes a parallel processing unit 1602. The parallel pro-
cessing unit includes an I/O unit 1604 that enables commu-
nication with other devices, including other instances of the

Sep. 2, 2021

parallel processing unit 1602. The /O unit 1604 may be
directly connected to other devices. In one embodiment the
1/O unit 1604 connects with other devices via the use of a
hub or switch interface, such as memory hub 1505. The
connections between the memory hub 1505 and the 1/O unit
1604 form a communication link 1513. Within the parallel
processing unit 1602, the 1/0 unit 1604 connects with a host
interface 1606 and a memory crossbar 1616, where the host
interface 1606 receives commands directed to performing
processing operations and the memory crossbar 1616
receives commands directed to performing memory opera-
tions.

[0131] When the host interface 1606 receives a command
buffer via the I/O unit 1604, the host interface 1606 can
direct work operations to perform those commands to a front
end 1608. In one embodiment the front end 1608 couples
with a scheduler 1610, which is configured to distribute
commands or other work items to a processing cluster array
1612. In one embodiment the scheduler 1610 ensures that
the processing cluster array 1612 is properly configured and
in a valid state before tasks are distributed to the processing
clusters of the processing cluster array 1612. In one embodi-
ment the scheduler 1610 is implemented via firmware logic
executing on a microcontroller. The microcontroller imple-
mented scheduler 1610 is configurable to perform complex
scheduling and work distribution operations at coarse and
fine granularity, enabling rapid preemption and context
switching of threads executing on the processing array 1612.
In one embodiment, the host software can prove workloads
for scheduling on the processing array 1612 via one of
multiple graphics processing doorbells. The workloads can
then be automatically distributed across the processing array
1612 by the scheduler 1610 logic within the scheduler
microcontroller.

[0132] The processing cluster array 1612 can include up to
“N” processing clusters (e.g., cluster 1614A, cluster 16148,
through cluster 1614N). Each cluster 1614A-1614N of the
processing cluster array 1612 can execute a large number of
concurrent threads. The scheduler 1610 can allocate work to
the clusters 1614A-1614N of the processing cluster array
1612 using various scheduling and/or work distribution
algorithms, which may vary depending on the workload
arising for each type of program or computation. The
scheduling can be handled dynamically by the scheduler
1610, or can be assisted in part by compiler logic during
compilation of program logic configured for execution by
the processing cluster array 1612. In one embodiment,
different clusters 1614A-1614N of the processing cluster
array 1612 can be allocated for processing different types of
programs or for performing different types of computations.
[0133] The processing cluster array 1612 can be config-
ured to perform various types of parallel processing opera-
tions. In one embodiment the processing cluster array 1612
is configured to perform general-purpose parallel compute
operations. For example, the processing cluster array 1612
can include logic to execute processing tasks including
filtering of video and/or audio data, performing modeling
operations, including physics operations, and performing
data transformations.

[0134] In one embodiment the processing cluster array
1612 is configured to perform parallel graphics processing
operations. In embodiments in which the parallel processor
1600 is configured to perform graphics processing opera-
tions, the processing cluster array 1612 can include addi-



US 2021/0272349 Al

tional logic to support the execution of such graphics
processing operations, including, but not limited to texture
sampling logic to perform texture operations, as well as
tessellation logic and other vertex processing logic. Addi-
tionally, the processing cluster array 1612 can be configured
to execute graphics processing related shader programs such
as, but not limited to vertex shaders, tessellation shaders,
geometry shaders, and pixel shaders. The parallel processing
unit 1602 can transfer data from system memory via the I/O
unit 1604 for processing. During processing the transferred
data can be stored to on-chip memory (e.g., parallel proces-
sor memory 1622) during processing, then written back to
system memory.

[0135] In one embodiment, when the parallel processing
unit 1602 is used to perform graphics processing, the sched-
uler 1610 can be configured to divide the processing work-
load into approximately equal sized tasks, to better enable
distribution of the graphics processing operations to multiple
clusters 1614A-1614N of the processing cluster array 1612.
In some embodiments, portions of the processing cluster
array 1612 can be configured to perform different types of
processing. For example a first portion may be configured to
perform vertex shading and topology generation, a second
portion may be configured to perform tessellation and geom-
etry shading, and a third portion may be configured to
perform pixel shading or other screen space operations, to
produce a rendered image for display. Intermediate data
produced by one or more of the clusters 1614A-1614N may
be stored in buffers to allow the intermediate data to be
transmitted between clusters 1614A-1614N for further pro-
cessing.

[0136] During operation, the processing cluster array 1612
can receive processing tasks to be executed via the scheduler
1610, which receives commands defining processing tasks
from front end 1608. For graphics processing operations,
processing tasks can include indices of data to be processed,
e.g., surface (patch) data, primitive data, vertex data, and/or
pixel data, as well as state parameters and commands
defining how the data is to be processed (e.g., what program
is to be executed). The scheduler 1610 may be configured to
fetch the indices corresponding to the tasks or may receive
the indices from the front end 1608. The front end 1608 can
be configured to ensure the processing cluster array 1612 is
configured to a valid state before the workload specified by
incoming command buffers (e.g., batch-buffers, push buf-
fers, etc.) is initiated.

[0137] Each of the one or more instances of the parallel
processing unit 1602 can couple with parallel processor
memory 1622. The parallel processor memory 1622 can be
accessed via the memory crossbar 1616, which can receive
memory requests from the processing cluster array 1612 as
well as the 1/O unit 1604. The memory crossbar 1616 can
access the parallel processor memory 1622 via a memory
interface 1618. The memory interface 1618 can include
multiple partition units (e.g., partition unit 1620A, partition
unit 1620B, through partition unit 1620N) that can each
couple to a portion (e.g., memory unit) of parallel processor
memory 1622. In one implementation the number of parti-
tion units 1620A-1620N is configured to be equal to the
number of memory units, such that a first partition unit
1620A has a corresponding first memory unit 1624A, a
second partition unit 1620B has a corresponding memory
unit 1624B, and an Nth partition unit 1620N has a corre-
sponding Nth memory unit 1624N. In other embodiments,

Sep. 2, 2021

the number of partition units 1620A-1620N may not be
equal to the number of memory devices.

[0138] In various embodiments, the memory units 1624 A-
1624N can include various types of memory devices, includ-
ing dynamic random access memory (DRAM) or graphics
random access memory, such as synchronous graphics ran-
dom access memory (SGRAM), including graphics double
data rate (GDDR) memory. In one embodiment, the memory
units 1624A-1624N may also include 3D stacked memory,
including but not limited to high bandwidth memory
(HBM). Persons skilled in the art will appreciate that the
specific implementation of the memory units 1624A-1624N
can vary, and can be selected from one of various conven-
tional designs. Render targets, such as frame buffers or
texture maps may be stored across the memory units 1624 A-
1624N, allowing partition units 1620A-1620N to write
portions of each render target in parallel to efficiently use the
available bandwidth of parallel processor memory 1622. In
some embodiments, a local instance of the parallel processor
memory 1622 may be excluded in favor of a unified memory
design that utilizes system memory in conjunction with local
cache memory.

[0139] In one embodiment, any one of the clusters 1614 A-
1614N of the processing cluster array 1612 can process data
that will be written to any of the memory units 1624A-
1624N within parallel processor memory 1622. The memory
crossbar 1616 can be configured to transfer the output of
each cluster 1614A-1614N to any partition unit 1620A-
1620N or to another cluster 1614A-1614N, which can
perform additional processing operations on the output.
Each cluster 1614A-1614N can communicate with the
memory interface 1618 through the memory crossbar 1616
to read from or write to various external memory devices. In
one embodiment the memory crossbar 1616 has a connec-
tion to the memory interface 1618 to communicate with the
I/O unit 1604, as well as a connection to a local instance of
the parallel processor memory 1622, enabling the processing
units within the different processing clusters 1614A-1614N
to communicate with system memory or other memory that
is not local to the parallel processing unit 1602. In one
embodiment the memory crossbar 1616 can use virtual
channels to separate traffic streams between the clusters
1614A-1614N and the partition units 1620A-1620N.
[0140] While a single instance of the parallel processing
unit 1602 is illustrated within the parallel processor 1600,
any number of instances of the parallel processing unit 1602
can be included. For example, multiple instances of the
parallel processing unit 1602 can be provided on a single
add-in card, or multiple add-in cards can be interconnected.
The different instances of the parallel processing unit 1602
can be configured to inter-operate even if the different
instances have different numbers of processing cores, dif-
ferent amounts of local parallel processor memory, and/or
other configuration differences. For example and in one
embodiment, some instances of the parallel processing unit
1602 can include higher precision floating point units rela-
tive to other instances. Systems incorporating one or more
instances of the parallel processing unit 1602 or the parallel
processor 1600 can be implemented in a variety of configu-
rations and form factors, including but not limited to desk-
top, laptop, or handheld personal computers, servers, work-
stations, game consoles, and/or embedded systems.

[0141] FIG. 16B is a block diagram of a partition unit
1620, according to an embodiment. In one embodiment the



US 2021/0272349 Al

partition unit 1620 is an instance of one of the partition units
1620A-1620N of FIG. 16A. As illustrated, the partition unit
1620 includes an L2 cache 1621, a frame buffer interface
1625, and a ROP 1626 (raster operations unit). The .2 cache
1621 is a read/write cache that is configured to perform load
and store operations received from the memory crossbar
1616 and ROP 1626. Read misses and urgent write-back
requests are output by L2 cache 1621 to frame buffer
interface 1625 for processing. Updates can also be sent to
the frame buffer via the frame buffer interface 1625 for
processing. In one embodiment the frame buffer interface
1625 interfaces with one of the memory units in parallel
processor memory, such as the memory units 1624 A-1624N
of FIG. 16 (e.g., within parallel processor memory 1622).
[0142] In graphics applications, the ROP 1626 is a pro-
cessing unit that performs raster operations such as stencil,
7 test, blending, and the like. The ROP 1626 then outputs
processed graphics data that is stored in graphics memory. In
some embodiments the ROP 1626 includes compression
logic to compress depth or color data that is written to
memory and decompress depth or color data that is read
from memory. The compression logic can be lossless com-
pression logic that makes use of one or more of multiple
compression algorithms. The type of compression that is
performed by the ROP 1626 can vary based on the statistical
characteristics of the data to be compressed. For example, in
one embodiment, delta color compression is performed on
depth and color data on a per-tile basis.

[0143] In some embodiments, the ROP 1626 is included
within each processing cluster (e.g., cluster 1614A-1614N
of FIG. 16) instead of within the partition unit 1620. In such
embodiment, read and write requests for pixel data are
transmitted over the memory crossbar 1616 instead of pixel
fragment data. The processed graphics data may be dis-
played on a display device, such as one of the one or more
display device(s) 1510 of FIG. 15, routed for further pro-
cessing by the processor(s) 1502, or routed for further
processing by one of the processing entities within the
parallel processor 1600 of FIG. 16A.

[0144] FIG. 16C is a block diagram of a processing cluster
1614 within a parallel processing unit, according to an
embodiment. In one embodiment the processing cluster is an
instance of one of the processing clusters 1614A-1614N of
FIG. 16. The processing cluster 1614 can be configured to
execute many threads in parallel, where the term “thread”
refers to an instance of a particular program executing on a
particular set of input data. In some embodiments, single-
instruction, multiple-data (SIMD) instruction issue tech-
niques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techniques are used to support par-
allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to issue
instructions to a set of processing engines within each one of
the processing clusters. Unlike a SIMD execution regime,
where all processing engines typically execute identical
instructions, SIMT execution allows different threads to
more readily follow divergent execution paths through a
given thread program. Persons skilled in the art will under-
stand that a SIMD processing regime represents a functional
subset of a SIMT processing regime.

[0145] Operation of the processing cluster 1614 can be
controlled via a pipeline manager 1632 that distributes

Sep. 2, 2021

processing tasks to SIMT parallel processors. The pipeline
manager 1632 receives instructions from the scheduler 1610
of FIG. 16 and manages execution of those instructions via
a graphics multiprocessor 1634 and/or a texture unit 1636.
The illustrated graphics multiprocessor 1634 is an exem-
plary instance of a SIMT parallel processor. However,
various types of SIMT parallel processors of differing archi-
tectures may be included within the processing cluster 1614.
One or more instances of the graphics multiprocessor 1634
can be included within a processing cluster 1614. The
graphics multiprocessor 1634 can process data and a data
crossbar 1640 can be used to distribute the processed data to
one of multiple possible destinations, including other shader
units. The pipeline manager 1632 can facilitate the distri-
bution of processed data by specifying destinations for
processed data to be distributed vis the data crossbar 1640.

[0146] Each graphics multiprocessor 1634 within the pro-
cessing cluster 1614 can include an identical set of func-
tional execution logic (e.g., arithmetic logic units, load-store
units, etc.). The functional execution logic can be configured
in a pipelined manner in which new instructions can be
issued before previous instructions are complete. The func-
tional execution logic supports a variety of operations
including integer and floating point arithmetic, comparison
operations, Boolean operations, bit-shifting, and computa-
tion of various algebraic functions. In one embodiment the
same functional-unit hardware can be leveraged to perform
different operations and any combination of functional units
may be present.

[0147] The instructions transmitted to the processing clus-
ter 1614 constitutes a thread. A set of threads executing
across the set of parallel processing engines is a thread
group. A thread group executes the same program on dif-
ferent input data. Each thread within a thread group can be
assigned to a different processing engine within a graphics
multiprocessor 1634. A thread group may include fewer
threads than the number of processing engines within the
graphics multiprocessor 1634. When a thread group includes
fewer threads than the number of processing engines, one or
more of the processing engines may be idle during cycles in
which that thread group is being processed. A thread group
may also include more threads than the number of process-
ing engines within the graphics multiprocessor 1634. When
the thread group includes more threads than the number of
processing engines within the graphics multiprocessor 1634,
processing can be performed over consecutive clock cycles.
In one embodiment multiple thread groups can be executed
concurrently on a graphics multiprocessor 1634.

[0148] In one embodiment the graphics multiprocessor
1634 includes an internal cache memory to perform load and
store operations. In one embodiment, the graphics multipro-
cessor 1634 can forego an internal cache and use a cache
memory (e.g., .1 cache 308) within the processing cluster
1614. Each graphics multiprocessor 1634 also has access to
L2 caches within the partition units (e.g., partition units
1620A-1620N of FIG. 16) that are shared among all pro-
cessing clusters 1614 and may be used to transfer data
between threads. The graphics multiprocessor 1634 may
also access off-chip global memory, which can include one
or more of local parallel processor memory and/or system
memory. Any memory external to the parallel processing
unit 1602 may be used as global memory. Embodiments in
which the processing cluster 1614 includes multiple



US 2021/0272349 Al

instances of the graphics multiprocessor 1634 can share
common instructions and data, which may be stored in the
L1 cache 1708.

[0149] Each processing cluster 1614 may include an
MMU 1645 (memory management unit) that is configured to
map virtual addresses into physical addresses. In other
embodiments, one or more instances of the MMU 1645 may
reside within the memory interface 1618 of FIG. 16. The
MMU 1645 includes a set of page table entries (PTEs) used
to map a virtual address to a physical address of a tile (talk
more about tiling) and optionally a cache line index. The
MMU 1645 may include address translation lookaside buf-
fers (TLB) or caches that may reside within the graphics
multiprocessor 1634 or the L1 cache or processing cluster
1614. The physical address is processed to distribute surface
data access locality to allow efficient request interleaving
among partition units. The cache line index may be used to
determine whether a request for a cache line is a hit or miss.
[0150] In graphics and computing applications, a process-
ing cluster 1614 may be configured such that each graphics
multiprocessor 1634 is coupled to a texture unit 1636 for
performing texture mapping operations, e.g., determining
texture sample positions, reading texture data, and filtering
the texture data. Texture data is read from an internal texture
L1 cache (not shown) or in some embodiments from the [.1
cache within graphics multiprocessor 1634 and is fetched
from an [.2 cache, local parallel processor memory, or
system memory, as needed. Each graphics multiprocessor
1634 outputs processed tasks to the data crosshar 1640 to
provide the processed task to another processing cluster
1614 for further processing or to store the processed task in
an L2 cache, local parallel processor memory, or system
memory via the memory crossbar 1616. A preROP 1642
(pre-raster operations unit) is configured to receive data
from graphics multiprocessor 1634, direct data to ROP units,
which may be located with partition units as described
herein (e.g., partition units 1620A-1620N of FIG. 16). The
preROP 1642 unit can perform optimizations for color
blending, organize pixel color data, and perform address
translations.

[0151] It will be appreciated that the core architecture
described herein is illustrative and that variations and modi-
fications are possible. Any number of processing units, e.g.,
graphics multiprocessor 1634, texture units 1636, preROPs
1642, etc., may be included within a processing cluster
1614. Further, while only one processing cluster 1614 is
shown, a parallel processing unit as described herein may
include any number of instances of the processing cluster
1614. In one embodiment, each processing cluster 1614 can
be configured to operate independently of other processing
clusters 1614 using separate and distinct processing units,
L1 caches, etc.

[0152] FIG. 16D shows a graphics multiprocessor 1634,
according to one embodiment. In such embodiment the
graphics multiprocessor 1634 couples with the pipeline
manager 1632 of the processing cluster 1614. The graphics
multiprocessor 1634 has an execution pipeline including but
not limited to an instruction cache 1652, an instruction unit
1654, an address mapping unit 1656, a register file 1658, one
or more general purpose graphics processing unit (GPGPU)
cores 1662, and one or more load/store units 1666. The
GPGPU cores 1662 and load/store units 1666 are coupled
with cache memory 1672 and shared memory 1670 via a
memory and cache interconnect 1668.

Sep. 2, 2021

[0153] In one embodiment, the instruction cache 1652
receives a stream of instructions to execute from the pipeline
manager 1632. The instructions are cached in the instruction
cache 1652 and dispatched for execution by the instruction
unit 1654. The instruction unit 1654 can dispatch instruc-
tions as thread groups (e.g., warps), with each thread of the
thread group assigned to a different execution unit within
GPGPU core 1662. An instruction can access any of a local,
shared, or global address space by specifying an address
within a unified address space. The address mapping unit
1656 can be used to translate addresses in the unified address
space into a distinct memory address that can be accessed by
the load/store units 1666.

[0154] The register file 1658 provides a set of registers for
the functional units of the graphics multiprocessor 1724. The
register file 1658 provides temporary storage for operands
connected to the data paths of the functional units (e.g.,
GPGPU cores 1662, load/store units 1666) of the graphics
multiprocessor 1724. In one embodiment, the register file
1658 is divided between each of the functional units such
that each functional unit is allocated a dedicated portion of
the register file 1658. In one embodiment, the register file
1658 is divided between the different warps being executed
by the graphics multiprocessor 1724.

[0155] The GPGPU cores 1662 can each include floating
point units (FPUs) and/or integer arithmetic logic units
(ALUs) that are used to execute instructions of the graphics
multiprocessor 1724. The GPGPU cores 1662 can be similar
in architecture or can differ in architecture, according to
embodiments. For example and in one embodiment, a first
portion of the GPGPU cores 1662 include a single precision
FPU and an integer ALU while a second portion of the
GPGPU cores include a double precision FPU. In one
embodiment the FPUs can implement the IEEE 754-2008
standard for floating point arithmetic or enable variable
precision floating point arithmetic. The graphics multipro-
cessor 1724 can additionally include one or more fixed
function or special function units to perform specific func-
tions such as copy rectangle or pixel blending operations. In
one embodiment one or more of the GPGPU cores can also
include fixed or special function logic.

[0156] Inone embodiment the GPGPU cores 1662 include
SIMD logic capable of performing a single instruction on
multiple sets of data. In one embodiment GPGPU cores
1662 can physically execute SIMD4, SIMDS, and SIMD16
instructions and logically execute SIMDI1, SIMD2, and
SIMD32 instructions. The SIMD instructions for the
GPGPU cores can be generated at compile time by a shader
compiler or automatically generated when executing pro-
grams written and compiled for single program multiple data
(SPMD) or SIMT architectures. Multiple threads of a pro-
gram configured for the SIMT execution model can
executed via a single SIMD instruction. For example and in
one embodiment, eight SIMT threads that perform the same
or similar operations can be executed in parallel via a single
SIMDS logic unit.

[0157] The memory and cache interconnect 1668 is an
interconnect network that connects each of the functional
units of the graphics multiprocessor 1724 to the register file
1658 and to the shared memory 1670. In one embodiment,
the memory and cache interconnect 1668 is a crossbar
interconnect that allows the load/store unit 1666 to imple-
ment load and store operations between the shared memory
1670 and the register file 1658. The register file 1658 can



US 2021/0272349 Al

operate at the same frequency as the GPGPU cores 1662,
thus data transfer between the GPGPU cores 1662 and the
register file 1658 is very low latency. The shared memory
1670 can be used to enable communication between threads
that execute on the functional units within the graphics
multiprocessor 1634. The cache memory 1672 can be used
as a data cache for example, to cache texture data commu-
nicated between the functional units and the texture unit
1636. The shared memory 1670 can also be used as a
program managed cached. Threads executing on the
GPGPU cores 1662 can programmatically store data within
the shared memory in addition to the automatically cached
data that is stored within the cache memory 1672.

[0158] FIGS. 17A-17B illustrate additional graphics mul-
tiprocessors, according to embodiments. The illustrated
graphics multiprocessors 1725, 1750 are variants of the
graphics multiprocessor 1634 of FIG. 16C. The illustrated
graphics multiprocessors 1725, 1750 can be configured as a
streaming multiprocessor (SM) capable of simultaneous
execution of a large number of execution threads.

[0159] FIG. 17A shows a graphics multiprocessor 1725
according to an additional embodiment. The graphics mul-
tiprocessor 1725 includes multiple additional instances of
execution resource units relative to the graphics multipro-
cessor 1634 of FIG. 16D. For example, the graphics multi-
processor 1725 can include multiple instances of the instruc-
tion unit 1732A-1732B, register file 1734A-1734B, and
texture unit(s) 1744A-1744B. The graphics multiprocessor
1725 also includes multiple sets of graphics or compute
execution units (e.g., GPGPU core 1736A-1736B, GPGPU
core 1737A-1737B, GPGPU core 1738A-1738B) and mul-
tiple sets of load/store units 1740A-1740B. In one embodi-
ment the execution resource units have a common instruc-
tion cache 1730, texture and/or data cache memory 1742,
and shared memory 1746.

[0160] The various components can communicate via an
interconnect fabric 1727. In one embodiment the intercon-
nect fabric 1727 includes one or more crossbar switches to
enable communication between the various components of
the graphics multiprocessor 1725. In one embodiment the
interconnect fabric 1727 is a separate, high-speed network
fabric layer upon which each component of the graphics
multiprocessor 1725 is stacked. The components of the
graphics multiprocessor 1725 communicate with remote
components via the interconnect fabric 1727. For example,
the GPGPU cores 1736A-1736B, 1737A-1737B, and
1737A-1738B can each communicate with shared memory
1746 via the interconnect fabric 1727. The interconnect
fabric 1727 can arbitrate communication within the graphics
multiprocessor 1725 to ensure a fair bandwidth allocation
between components.

[0161] FIG. 17B shows a graphics multiprocessor 1750
according to an additional embodiment. The graphics pro-
cessor includes multiple sets of execution resources 1756 A-
1756D, where each set of execution resource includes mul-
tiple instruction units, register files, GPGPU cores, and load
store units, as illustrated in FIG. 16D and FIG. 17A. The
execution resources 1756 A-1756D can work in concert with
texture unit(s) 1760A-1760D for texture operations, while
sharing an instruction cache 1754, and shared memory 1762.
In one embodiment the execution resources 1756A-1756D
can share an instruction cache 1754 and shared memory
1762, as well as multiple instances of a texture and/or data
cache memory 1758A-1758B. The various components can

Sep. 2, 2021

communicate via an interconnect fabric 1752 similar to the
interconnect fabric 1727 of FIG. 17A.

[0162] Persons skilled in the art will understand that the
architecture described in FIGS. 15, 16A-16D, and 17A-17B
are descriptive and not limiting as to the scope of the present
embodiments. Thus, the techniques described herein may be
implemented on any properly configured processing unit,
including, without limitation, one or more mobile applica-
tion processors, one or more desktop or server central
processing units (CPUs) including multi-core CPUs, one or
more parallel processing units, such as the parallel process-
ing unit 1602 of FIG. 16, as well as one or more graphics
processors or special purpose processing units, without
departure from the scope of the embodiments described
herein.

[0163] In some embodiments a parallel processor or
GPGPU as described herein is communicatively coupled to
host/processor cores to accelerate graphics operations,
machine-learning operations, pattern analysis operations,
and various general purpose GPU (GPGPU) functions. The
GPU may be communicatively coupled to the host proces-
sor/cores over a bus or other interconnect (e.g., a high speed
interconnect such as PCle or NVLink). In other embodi-
ments, the GPU may be integrated on the same package or
chip as the cores and communicatively coupled to the cores
over an internal processor bus/interconnect (i.e., internal to
the package or chip). Regardless of the manner in which the
GPU is connected, the processor cores may allocate work to
the GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

Techniques for GPU to Host Processor Interconnection

[0164] FIG. 18A illustrates an exemplary architecture in
which a plurality of GPUs 1810-1813 are communicatively
coupled to a plurality of multi-core processors 1805-1806
over high-speed links 1840-1843 (e.g., buses, point-to-point
interconnects, etc.). In one embodiment, the high-speed
links 1840-1843 support a communication throughput of 4
GB/s, 30 GB/s, 80 GB/s or higher, depending on the
implementation. Various interconnect protocols may be used
including, but not limited to, PCle 4.0 or 5.0 and NVLink
2.0. However, the underlying principles of the invention are
not limited to any particular communication protocol or
throughput.

[0165] In addition, in one embodiment, two or more of the
GPUs 1810-1813 are interconnected over high-speed links
1844-1845, which may be implemented using the same or
different protocols/links than those used for high-speed links
1840-1843. Similarly, two or more of the multi-core pro-
cessors 1805-1806 may be connected over high speed link
1833 which may be symmetric multi-processor (SMP) buses
operating at 20 GB/s, 30 GB/s, 120 GB/s or higher. Alter-
natively, all communication between the various system
components shown in FIG. 18 A may be accomplished using
the same protocols/links (e.g., over a common interconnec-
tion fabric). As mentioned, however, the underlying prin-
ciples of the invention are not limited to any particular type
of interconnect technology.

[0166] In one embodiment, each multi-core processor
1805-1806 is communicatively coupled to a processor
memory 1801-1802, via memory interconnects 1830-1831,
respectively, and each GPU 1810-1813 is communicatively



US 2021/0272349 Al

coupled to GPU memory 1820-1823 over GPU memory
interconnects 1850-1853, respectively. The memory inter-
connects 1830-1831 and 1850-1853 may utilize the same or
different memory access technologies. By way of example,
and not limitation, the processor memories 1801-1802 and
GPU memories 1820-1823 may be volatile memories such
as dynamic random access memories (DRAMs) (including
stacked DRAMSs), Graphics DDR SDRAM (GDDR) (e.g.,
GDDRS5, GDDR6), or High Bandwidth Memory (HBM)
and/or may be non-volatile memories such as 3D XPoint or
Nano-Ram. In one embodiment, some portion of the memo-
ries may be volatile memory and another portion may be
non-volatile memory (e.g., using a two-level memory (2LM)
hierarchy).

[0167] As described below, although the various proces-
sors 1805-1806 and GPUs 1810-1813 may be physically
coupled to a particular memory 1801-1802, 1820-1823,
respectively, a unified memory architecture may be imple-
mented in which the same virtual system address space (also
referred to as the “effective address” space) is distributed
among all of the various physical memories. For example,
processor memories 1801-1802 may each comprise 64 GB
of the system memory address space and GPU memories
1820-1823 may each comprise 32 GB of the system memory
address space (resulting in a total of 256 GB addressable
memory in this example).

[0168] FIG. 18B illustrates additional details for an inter-
connection between a multi-core processor 1807 and a
graphics acceleration module 1846 in accordance with one
embodiment. The graphics acceleration module 1846 may
include one or more GPU chips integrated on a line card
which is coupled to the processor 1807 via the high-speed
link 1840. Alternatively, the graphics acceleration module
1846 may be integrated on the same package or chip as the
processor 1807.

[0169] The illustrated processor 1807 includes a plurality
of cores 1860A-1860D, each with a translation lookaside
buffer 1861A-1861D and one or more caches 1862A-
1862D. The cores may include various other components for
executing instructions and processing data which are not
illustrated to avoid obscuring the underlying principles of
the invention (e.g., instruction fetch units, branch prediction
units, decoders, execution units, reorder buffers, etc.). The
caches 1862A-1862D may comprise level 1 (L1) and level
2 (L2) caches. In addition, one or more shared caches 1826
may be included in the caching hierarchy and shared by sets
of the cores 1860A-1860D. For example, one embodiment
of the processor 1807 includes 24 cores, each with its own
L1 cache, twelve shared L2 caches, and twelve shared L3
caches. In this embodiment, one of the .2 and L3 caches are
shared by two adjacent cores. The processor 1807 and the
graphics accelerator integration module 1846 connect with
system memory 1841, which may include processor memo-
ries 1801-1802

[0170] Coherency is maintained for data and instructions
stored in the various caches 1862A-1862D, 1856 and system
memory 1841 via inter-core communication over a coher-
ence bus 1864. For example, each cache may have cache
coherency logic/circuitry associated therewith to communi-
cate to over the coherence bus 1864 in response to detected
reads or writes to particular cache lines. In one implemen-
tation, a cache snooping protocol is implemented over the
coherence bus 1864 to snoop cache accesses. Cache snoop-
ing/coherency techniques are well understood by those of

Sep. 2, 2021

skill in the art and will not be described in detail here to
avoid obscuring the underlying principles of the invention.
[0171] In one embodiment, a proxy circuit 1825 commu-
nicatively couples the graphics acceleration module 1846 to
the coherence bus 1864, allowing the graphics acceleration
module 1846 to participate in the cache coherence protocol
as a peer of the cores. In particular, an interface 1835
provides connectivity to the proxy circuit 1825 over high-
speed link 1840 (e.g., a PCle bus, NVLink, etc.) and an
interface 1837 connects the graphics acceleration module
1846 to the link 1840.

[0172] In one implementation, an accelerator integration
circuit 1836 provides cache management, memory access,
context management, and interrupt management services on
behalf of a plurality of graphics processing engines 1831,
1832, N of the graphics acceleration module 1846. The
graphics processing engines 1831, 1832, N may each com-
prise a separate graphics processing unit (GPU). Alterna-
tively, the graphics processing engines 1831, 1832, N may
comprise different types of graphics processing engines
within a GPU such as graphics execution units, media
processing engines (e.g., video encoders/decoders), sam-
plers, and blit engines. In other words, the graphics accel-
eration module may be a GPU with a plurality of graphics
processing engines 1831-1832, N or the graphics processing
engines 1831-1832, N may be individual GPUs integrated
on a common package, line card, or chip.

[0173] In one embodiment, the accelerator integration
circuit 1836 includes a memory management unit (MMU)
1839 for performing various memory management functions
such as virtual-to-physical memory translations (also
referred to as effective-to-real memory translations) and
memory access protocols for accessing system memory
1841. The MMU 1839 may also include a translation
lookaside buffer (TLB) (not shown) for caching the virtual/
effective to physical/real address translations. In one imple-
mentation, a cache 1838 stores commands and data for
efficient access by the graphics processing engines 1831-
1832, N. In one embodiment, the data stored in cache 1838
and graphics memories 1833-1834, N is kept coherent with
the core caches 1862A-1862D, 1856 and system memory
1811. As mentioned, this may be accomplished via proxy
circuit 1825 which takes part in the cache coherency mecha-
nism on behalf of cache 1838 and memories 1833-1834, N
(e.g., sending updates to the cache 1838 related to modifi-
cations/accesses of cache lines on processor caches 1862A-
1862D, 1856 and receiving updates from the cache 1838).
[0174] A set of registers 1845 store context data for
threads executed by the graphics processing engines 1831-
1832, N and a context management circuit 1848 manages the
thread contexts. For example, the context management cir-
cuit 1848 may perform save and restore operations to save
and restore contexts of the various threads during contexts
switches (e.g., where a first thread is saved and a second
thread is stored so that the second thread can be execute by
a graphics processing engine). For example, on a context
switch, the context management circuit 1848 may store
current register values to a designated region in memory
(e.g., identified by a context pointer). It may then restore the
register values when returning to the context. In one embodi-
ment, an interrupt management circuit 1847 receives and
processes interrupts received from system devices.

[0175] In one implementation, virtual/effective addresses
from a graphics processing engine 1831 are translated to



US 2021/0272349 Al

real/physical addresses in system memory 1811 by the
MMU 1839. One embodiment of the accelerator integration
circuit 1836 supports multiple (e.g., 4, 8, 16) graphics
accelerator modules 1846 and/or other accelerator devices.
The graphics accelerator module 1846 may be dedicated to
a single application executed on the processor 1807 or may
be shared between multiple applications. In one embodi-
ment, a virtualized graphics execution environment is pre-
sented in which the resources of the graphics processing
engines 1831-1832, N are shared with multiple applications
or virtual machines (VMs). The resources may be subdi-
vided into “slices” which are allocated to different VMs
and/or applications based on the processing requirements
and priorities associated with the VMs and/or applications.
[0176] Thus, the accelerator integration circuit acts as a
bridge to the system for the graphics acceleration module
1846 and provides address translation and system memory
cache services. In addition, the accelerator integration circuit
1836 may provide virtualization facilities for the host pro-
cessor to manage virtualization of the graphics processing
engines, interrupts, and memory management.

[0177] Because hardware resources of the graphics pro-
cessing engines 1831-1832, N are mapped explicitly to the
real address space seen by the host processor 1807, any host
processor can address these resources directly using an
effective address value. One function of the accelerator
integration circuit 1836, in one embodiment, is the physical
separation of the graphics processing engines 1831-1832, N
so that they appear to the system as independent units.
[0178] As mentioned, in the illustrated embodiment, one
or more graphics memories 1833-1834, M are coupled to
each of the graphics processing engines 1831-1832, N,
respectively. The graphics memories 1833-1834, M store
instructions and data being processed by each of the graph-
ics processing engines 1831-1832, N. The graphics memo-
ries 1833-1834, M may be volatile memories such as
DRAMs (including stacked DRAMs), GDDR memory (e.g.,
GDDRS, GDDR6), or HBM, and/or may be non-volatile
memories such as 3D XPoint or Nano-Ram.

[0179] In one embodiment, to reduce data traffic over link
1840, biasing techniques are used to ensure that the data
stored in graphics memories 1833-1834, M is data which
will be used most frequently by the graphics processing
engines 1831-1832, N and preferably not used by the cores
1860A-1860D (at least not frequently). Similarly, the bias-
ing mechanism attempts to keep data needed by the cores
(and preferably not the graphics processing engines 1831-
1832, N) within the caches 1862A-1862D, 1856 of the cores
and system memory 1811.

[0180] FIG. 18C illustrates another embodiment in which
the accelerator integration circuit 1836 is integrated within
the processor 1807. In this embodiment, the graphics pro-
cessing engines 1831-1832, N communicate directly over
the high-speed link 1840 to the accelerator integration
circuit 1836 via interface 1837 and interface 1835 (which,
again, may be utilize any form of bus or interface protocol).
The accelerator integration circuit 1836 may perform the
same operations as those described with respect to FIG. 18B,
but potentially at a higher throughput given its close prox-
imity to the coherency bus 1862 and caches 1862A-1862D,
1826.

[0181] One embodiment supports different programming
models including a dedicated-process programming model
(no graphics acceleration module virtualization) and shared

Sep. 2, 2021

programming models (with virtualization). The latter may
include programming models which are controlled by the
accelerator integration circuit 1836 and programming mod-
els which are controlled by the graphics acceleration module
1846.

[0182] Inone embodiment of the dedicated process model,
graphics processing engines 1831-1832, N are dedicated to
a single application or process under a single operating
system. The single application can funnel other application
requests to the graphics engines 1831-1832, N, providing
virtualization within a VM/partition.

[0183] In the dedicated-process programming models, the
graphics processing engines 1831-1832, N, may be shared
by multiple VM/application partitions. The shared models
require a system hypervisor to virtualize the graphics pro-
cessing engines 1831-1832, N to allow access by each
operating system. For single-partition systems without a
hypervisor, the graphics processing engines 1831-1832, N
are owned by the operating system. In both cases, the
operating system can virtualize the graphics processing
engines 1831-1832, N to provide access to each process or
application.

[0184] For the shared programming model, the graphics
acceleration module 1846 or an individual graphics process-
ing engine 1831-1832, N selects a process element using a
process handle. In one embodiment, process elements are
stored in system memory 1811 and are addressable using the
effective address to real address translation techniques
described herein. The process handle may be an implemen-
tation-specific value provided to the host process when
registering its context with the graphics processing engine
1831-1832, N (that is, calling system software to add the
process element to the process element linked list). The
lower 16-bits of the process handle may be the offset of the
process element within the process element linked list.
[0185] FIG. 18D illustrates an exemplary accelerator inte-
gration slice 1890. As used herein, a “slice” comprises a
specified portion of the processing resources of the accel-
erator integration circuit 1836. Application effective address
space 1882 within system memory 1811 stores process
elements 1883. In one embodiment, the process elements
1883 are stored in response to GPU invocations 1881 from
applications 1880 executed on the processor 1807. A process
element 1883 contains the process state for the correspond-
ing application 1880. A work descriptor (WD) 1884 con-
tained in the process element 1883 can be a single job
requested by an application or may contain a pointer to a
queue of jobs. In the latter case, the WD 1884 is a pointer
to the job request queue in the application’s address space
1882.

[0186] The graphics acceleration module 1846 and/or the
individual graphics processing engines 1831-1832, N can be
shared by all or a subset of the processes in the system.
Embodiments of the invention include an infrastructure for
setting up the process state and sending a WD 1884 to a
graphics acceleration module 1846 to start a job in a
virtualized environment.

[0187] In one implementation, the dedicated-process pro-
gramming model is implementation-specific. In this model,
a single process owns the graphics acceleration module 1846
or an individual graphics processing engine 1831. Because
the graphics acceleration module 1846 is owned by a single
process, the hypervisor initializes the accelerator integration
circuit 1836 for the owning partition and the operating



US 2021/0272349 Al

system initializes the accelerator integration circuit 1836 for
the owning process at the time when the graphics accelera-
tion module 1846 is assigned.

[0188] In operation, a WD fetch unit 1891 in the accel-
erator integration slice 1890 fetches the next WD 1884
which includes an indication of the work to be done by one
of the graphics processing engines of the graphics accelera-
tion module 1846. Data from the WD 1884 may be stored in
registers 1845 and used by the MMU 1839, interrupt man-
agement circuit 1847 and/or context management circuit
1846 as illustrated. For example, one embodiment of the
MMU 1839 includes segment/page walk circuitry for
accessing segment/page tables 1886 within the OS virtual
address space 1885. The interrupt management circuit 1847
may process interrupt events 1892 received from the graph-
ics acceleration module 1846. When performing graphics
operations, an effective address 1893 generated by a graph-
ics processing engine 1831-1832, N is translated to a real
address by the MMU 1839.

[0189] In one embodiment, the same set of registers 1845
are duplicated for each graphics processing engine 1831-
1832, N and/or graphics acceleration module 1846 and may
be initialized by the hypervisor or operating system. Each of
these duplicated registers may be included in an accelerator
integration slice 1890. Exemplary registers that may be
initialized by the hypervisor are shown in Table 1.

TABLE 1

Hypervisor Initialized Registers

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer

Authority Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limit

State Register

Logical Partition ID

Real address (RA) Hypervisor Accelerator Utilization Record Pointer
Storage Description Register

NoNE-CEEN e N VRN N VO SR

[0190] Exemplary registers that may be initialized by the
operating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

Process and Thread Identification

Effective Address (EA) Context Save/Restore Pointer
Virtual Address (VA) Accelerator Utilization Record Pointer
Virtual Address (VA) Storage Segment Table Pointer
Authority Mask

Work descriptor

[ R N S

[0191] In one embodiment, each WD 1884 is specific to a
particular graphics acceleration module 1846 and/or graph-
ics processing engine 1831-1832, N. It contains all the
information a graphics processing engine 1831-1832, N
requires to do its work or it can be a pointer to a memory
location where the application has set up a command queue
of work to be completed.

[0192] FIG. 18E illustrates additional details for one
embodiment of a shared model. This embodiment includes
a hypervisor real address space 1898 in which a process
element list 1899 is stored. The hypervisor real address

Sep. 2, 2021

space 1898 is accessible via a hypervisor 1896 which
virtualizes the graphics acceleration module engines for the
operating system 1895.

[0193] The shared programming models allow for all or a
subset of processes from all or a subset of partitions in the
system to use a graphics acceleration module 1846. There
are two programming models where the graphics accelera-
tion module 1846 is shared by multiple processes and
partitions: time-sliced shared and graphics directed shared.

[0194] Inthis model, the system hypervisor 1896 owns the
graphics acceleration module 1846 and makes its function
available to all operating systems 1895. For a graphics
acceleration module 1846 to support virtualization by the
system hypervisor 1896, the graphics acceleration module
1846 may adhere to the following requirements: 1) An
application’s job request must be autonomous (that is, the
state does not need to be maintained between jobs), or the
graphics acceleration module 1846 must provide a context
save and restore mechanism. 2) An application’s job request
is guaranteed by the graphics acceleration module 1846 to
complete in a specified amount of time, including any
translation faults, or the graphics acceleration module 1846
provides the ability to preempt the processing of the job. 3)
The graphics acceleration module 1846 must be guaranteed
fairness between processes when operating in the directed
shared programming model.

[0195] In one embodiment, for the shared model, the
application 1880 is required to make an operating system
1895 system call with a graphics acceleration module 1846
type, a work descriptor (WD), an authority mask register
(AMR) value, and a context save/restore area pointer
(CSRP). The graphics acceleration module 1846 type
describes the targeted acceleration function for the system
call. The graphics acceleration module 1846 type may be a
system-specific value. The WD is formatted specifically for
the graphics acceleration module 1846 and can be in the
form of a graphics acceleration module 1846 command, an
effective address pointer to a user-defined structure, an
effective address pointer to a queue of commands, or any
other data structure to describe the work to be done by the
graphics acceleration module 1846. In one embodiment, the
AMR value is the AMR state to use for the current process.
The value passed to the operating system is similar to an
application setting the AMR. If the accelerator integration
circuit 1836 and graphics acceleration module 1846 imple-
mentations do not support a User Authority Mask Override
Register (UAMOR), the operating system may apply the
current UAMOR value to the AMR value before passing the
AMR in the hypervisor call. The hypervisor 1896 may
optionally apply the current Authority Mask Override Reg-
ister (AMOR) value before placing the AMR into the
process element 1883. In one embodiment, the CSRP is one
of the registers 1845 containing the effective address of an
area in the application’s address space 1882 for the graphics
acceleration module 1846 to save and restore the context
state. This pointer is optional if no state is required to be
saved between jobs or when a job is preempted. The context
save/restore area may be pinned system memory.

[0196] Upon receiving the system call, the operating sys-
tem 1895 may verify that the application 1880 has registered
and been given the authority to use the graphics acceleration
module 1846. The operating system 1895 then calls the
hypervisor 1896 with the information shown in Table 3.



US 2021/0272349 Al

TABLE 3

OS to Hypervisor Call Parameters

A work descriptor (WD)

An Authority Mask Register (AMR) value (potentially masked).

An effective address (EA) Context Save/Restore Area Pointer (CSRP)
A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)
The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

B Y N

[0197] Upon receiving the hypervisor call, the hypervisor
1896 verifies that the operating system 1895 has registered
and been given the authority to use the graphics acceleration
module 1846. The hypervisor 1896 then puts the process
element 1883 into the process element linked list for the
corresponding graphics acceleration module 1846 type. The
process element may include the information shown in Table
4.

TABLE 4

Process Element Information

1 A work descriptor (WD)
2 An Authority Mask Register (AMR) value (potentially masked).
3 An effective address (EA) Context Save/Restore Area
Pointer (CSRP)
4 A process ID (PID) and optional thread ID (TID)
5 A virtual address (VA) accelerator utilization record
pointer (AURP)
6 The virtual address of the storage segment table pointer (SSTP)
7 A logical interrupt service number (LISN)
8 Interrupt vector table, derived from the hypervisor call parameters.
9 A state register (SR) value
10 A logical partition ID (LPID)
11 A real address (RA) hypervisor accelerator utilization record pointer
12 The Storage Descriptor Register (SDR)

[0198] In one embodiment, the hypervisor initializes a
plurality of accelerator integration slice 1890 registers 1845.
[0199] As illustrated in FIG. 18F, one embodiment of the
invention employs a unified memory addressable via a
common virtual memory address space used to access the
physical processor memories 1801-1802 and GPU memo-
ries 1820-1823. In this implementation, operations executed
on the GPUs 1810-1813 utilize the same virtual/effective
memory address space to access the processors memories
1801-1802 and vice versa, thereby simplifying programma-
bility. In one embodiment, a first portion of the virtual/
effective address space is allocated to the processor memory
1801, a second portion to the second processor memory
1802, a third portion to the GPU memory 1820, and so on.
The entire virtual/effective memory space (sometimes
referred to as the effective address space) is thereby distrib-
uted across each of the processor memories 1801-1802 and
GPU memories 1820-1823, allowing any processor or GPU
to access any physical memory with a virtual address
mapped to that memory.

[0200] In one embodiment, bias/coherence management
circuitry 1894A-1894E within one or more of the MMUs
1839A-1839E ensures cache coherence between the caches
of the host processors (e.g., 1805) and the GPUs 1810-1813
and implements biasing techniques indicating the physical
memories in which certain types of data should be stored.
While multiple instances of bias/coherence management
circuitry 1894A-1894E are illustrated in FIG. 18F, the
bias/coherence circuitry may be implemented within the

Sep. 2, 2021

MMU of one or more host processors 1805 and/or within the
accelerator integration circuit 1836.

[0201] One embodiment allows GPU-attached memory
1820-1823 to be mapped as part of system memory, and
accessed using shared virtual memory (SVM) technology,
but without suffering the typical performance drawbacks
associated with full system cache coherence. The ability to
GPU-attached memory 1820-1823 to be accessed as system
memory without onerous cache coherence overhead pro-
vides a beneficial operating environment for GPU offload.
This arrangement allows the host processor 1805 software to
setup operands and access computation results, without the
overhead of tradition I/O DMA data copies. Such traditional
copies involve driver calls, interrupts and memory mapped
/O (MMIO) accesses that are all inefficient relative to
simple memory accesses. At the same time, the ability to
access GPU attached memory 1820-1823 without cache
coherence overheads can be critical to the execution time of
an offloaded computation. In cases with substantial stream-
ing write memory traffic, for example, cache coherence
overhead can significantly reduce the effective write band-
width seen by a GPU 1810-1813. The efficiency of operand
setup, the efficiency of results access, and the efficiency of
GPU computation all play a role in determining the effec-
tiveness of GPU offload.

[0202] In one implementation, the selection of between
GPU bias and host processor bias is driven by a bias tracker
data structure. A bias table may be used, for example, which
may be a page-granular structure (i.e., controlled at the
granularity of a memory page) that includes 1 or 2 bits per
GPU-attached memory page. The bias table may be imple-
mented in a stolen memory range of one or more GPU-
attached memories 1820-1823, with or without a bias cache
in the GPU 1810-1813 (e.g., to cache frequently/recently
used entries of the bias table). Alternatively, the entire bias
table may be maintained within the GPU.

[0203] In one implementation, the bias table entry asso-
ciated with each access to the GPU-attached memory 1820-
1823 is accessed prior the actual access to the GPU memory,
causing the following operations. First, local requests from
the GPU 1810-1813 that find their page in GPU bias are
forwarded directly to a corresponding GPU memory 1820-
1823. Local requests from the GPU that find their page in
host bias are forwarded to the processor 1805 (e.g., over a
high-speed link as discussed above). In one embodiment,
requests from the processor 1805 that find the requested
page in host processor bias complete the request like a
normal memory read. Alternatively, requests directed to a
GPU-biased page may be forwarded to the GPU 1810-1813.
The GPU may then transition the page to a host processor
bias if it is not currently using the page.

[0204] The bias state of a page can be changed either by
a software-based mechanism, a hardware-assisted software-
based mechanism, or, for a limited set of cases, a purely
hardware-based mechanism.

[0205] One mechanism for changing the bias state
employs an API call (e.g. OpenCL), which, in turn, calls the
GPU’s device driver which, in turn, sends a message (or
enqueues a command descriptor) to the GPU directing it to
change the bias state and, for some transitions, perform a
cache flushing operation in the host. The cache flushing
operation is required for a transition from host processor
1805 bias to GPU bias, but is not required for the opposite
transition.



US 2021/0272349 Al

[0206] Inone embodiment, cache coherency is maintained
by temporarily rendering GPU-biased pages uncacheable by
the host processor 1805. To access these pages, the processor
1805 may request access from the GPU 1810 which may or
may not grant access right away, depending on the imple-
mentation. Thus, to reduce communication between the
processor 1805 and GPU 1810 it is beneficial to ensure that
GPU-biased pages are those which are required by the GPU
but not the host processor 1805 and vice versa.

Graphics Processing Pipeline

[0207] FIG. 19 illustrates a graphics processing pipeline
1900, according to an embodiment. In one embodiment a
graphics processor can implement the illustrated graphics
processing pipeline 1900. The graphics processor can be
included within the parallel processing subsystems as
described herein, such as the parallel processor 1600 of FIG.
16, which, in one embodiment, is a variant of the parallel
processor(s) 1512 of FIG. 15. The various parallel process-
ing systems can implement the graphics processing pipeline
1900 via one or more instances of the parallel processing
unit (e.g., parallel processing unit 1602 of FIG. 16) as
described herein. For example, a shader unit (e.g., graphics
multiprocessor 1634 of FIG. 17) may be configured to
perform the functions of one or more of a vertex processing
unit 1904, a tessellation control processing unit 1908, a
tessellation evaluation processing unit 1912, a geometry
processing unit 1916, and a fragment/pixel processing unit
1924. The functions of data assembler 1902, primitive
assemblers 1906, 1914, 1918, tessellation unit 1910, raster-
izer 1922, and raster operations unit 1926 may also be
performed by other processing engines within a processing
cluster (e.g., processing cluster 1614 of FIG. 17) and a
corresponding partition unit (e.g., partition unit 220A-220N
of FIG. 16). The graphics processing pipeline 1900 may also
be implemented using dedicated processing units for one or
more functions. In one embodiment, one or more portions of
the graphics processing pipeline 1900 can be performed by
parallel processing logic within a general purpose processor
(e.g., CPU). In one embodiment, one or more portions of the
graphics processing pipeline 1900 can access on-chip
memory (e.g., parallel processor memory 1622 as in FIG.
16) via a memory interface 1928, which may be an instance
of the memory interface 1618 of FIG. 16.

[0208] In one embodiment the data assembler 1902 is a
processing unit that collects vertex data for surfaces and
primitives. The data assembler 1902 then outputs the vertex
data, including the vertex attributes, to the vertex processing
unit 1904. The vertex processing unit 1904 is a program-
mable execution unit that executes vertex shader programs,
lighting and transforming vertex data as specified by the
vertex shader programs. The vertex processing unit 1904
reads data that is stored in cache, local or system memory for
use in processing the vertex data and may be programmed to
transform the vertex data from an object-based coordinate
representation to a world space coordinate space or a nor-
malized device coordinate space.

[0209] A first instance of a primitive assembler 1906
receives vertex attributes from the vertex processing unit
190. The primitive assembler 1906 readings stored vertex
attributes as needed and constructs graphics primitives for
processing by tessellation control processing unit 1908. The
graphics primitives include triangles, line segments, points,

Sep. 2, 2021

patches, and so forth, as supported by various graphics
processing application programming interfaces (APIs).
[0210] The tessellation control processing unit 1908 treats
the input vertices as control points for a geometric patch.
The control points are transformed from an input represen-
tation from the patch (e.g., the patch’s bases) to a represen-
tation that is suitable for use in surface evaluation by the
tessellation evaluation processing unit 1912. The tessellation
control processing unit 1908 can also compute tessellation
factors for edges of geometric patches. A tessellation factor
applies to a single edge and quantifies a view-dependent
level of detail associated with the edge. A tessellation unit
1910 is configured to receive the tessellation factors for
edges of a patch and to tessellate the patch into multiple
geometric primitives such as line, triangle, or quadrilateral
primitives, which are transmitted to a tessellation evaluation
processing unit 1912. The tessellation evaluation processing
unit 1912 operates on parameterized coordinates of the
subdivided patch to generate a surface representation and
vertex attributes for each vertex associated with the geo-
metric primitives.

[0211] A second instance of a primitive assembler 1914
receives vertex attributes from the tessellation evaluation
processing unit 1912, reading stored vertex attributes as
needed, and constructs graphics primitives for processing by
the geometry processing unit 1916. The geometry process-
ing unit 1916 is a programmable execution unit that executes
geometry shader programs to transform graphics primitives
received from primitive assembler 1914 as specified by the
geometry shader programs. In one embodiment the geom-
etry processing unit 1916 is programmed to subdivide the
graphics primitives into one or more new graphics primi-
tives and calculate parameters used to rasterize the new
graphics primitives.

[0212] In some embodiments the geometry processing
unit 1916 can add or delete elements in the geometry stream.
The geometry processing unit 1916 outputs the parameters
and vertices specifying new graphics primitives to primitive
assembler 1918. The primitive assembler 1918 receives the
parameters and vertices from the geometry processing unit
1916 and constructs graphics primitives for processing by a
viewport scale, cull, and clip unit 1920. The geometry
processing unit 1916 reads data that is stored in parallel
processor memory or system memory for use in processing
the geometry data. The viewport scale, cull, and clip unit
1920 performs clipping, culling, and viewport scaling and
outputs processed graphics primitives to a rasterizer 1922.
[0213] The rasterizer 1922 can perform depth culling and
other depth-based optimizations. The rasterizer 1922 also
performs scan conversion on the new graphics primitives to
generate fragments and output those fragments and associ-
ated coverage data to the fragment/pixel processing unit
1924. The fragment/pixel processing unit 1924 is a program-
mable execution unit that is configured to execute fragment
shader programs or pixel shader programs. The fragment/
pixel processing unit 1924 transforming fragments or pixels
received from rasterizer 1922, as specified by the fragment
or pixel shader programs. For example, the fragment/pixel
processing unit 1924 may be programmed to perform opera-
tions included but not limited to texture mapping, shading,
blending, texture correction and perspective correction to
produce shaded fragments or pixels that are output to a raster
operations unit 1926. The fragment/pixel processing unit
1924 can read data that is stored in either the parallel



US 2021/0272349 Al

processor memory or the system memory for use when
processing the fragment data. Fragment or pixel shader
programs may be configured to shade at sample, pixel, tile,
or other granularities depending on the sampling rate con-
figured for the processing units.

[0214] The raster operations unit 1926 is a processing unit
that performs raster operations including, but not limited to
stencil, z test, blending, and the like, and outputs pixel data
as processed graphics data to be stored in graphics memory
(e.g., parallel processor memory 1622 as in FIG. 16, and/or
system memory 1504 as in FIG. 15, to be displayed on the
one or more display device(s) 1510 or for further processing
by one of the one or more processor(s) 1502 or parallel
processor(s) 1512. In some embodiments the raster opera-
tions unit 1926 is configured to compress z or color data that
is written to memory and decompress z or color data that is
read from memory.

Position-Based Rendering Apparatus and Method
for Multi-Die/GPU Graphics Processing

[0215] As mentioned, as graphics processors scale to
larger die sizes, it is desirable to integrate multiple silicon
dies into a single cohesive unit capable of running a single
3D context in order to address manufacturability, scalability,
and power delivery problems. Doing this requires solutions
for multiple classes of scalability as well as interconnect
challenges in order to deliver the best performance on a
single 3D application running on multiple dies. Algorithms
currently in use which attempt to address this problem
include alternate frame rendering (AFR) and split frame
rendering (SFR) as well as variants of these approaches.
[0216] Existing solutions are limited in terms of perfor-
mance scaling. With perfect scaling, a “2-way” (2 GPU)
solution would yield 200% performance over a 1 GPU
solution, and a “4-way” (4 GPU) solution would yield 400%
performance of a 1 GPU solution. In practice, however, they
deliver significantly lower performance than this.

[0217] Detailed measurements for different systems are
shown in FIG. 20. There are several causes of the scaling
limitations. First, geometry work does not scale because it
must be replicated to all participants in split frame rendering
(SFR) approaches. In addition, cross frame dependencies
require copying data between GPUs and hot spotting of
work followed by synchronization points results in waiting
threads. Finally, alternate frame rendering (AFR) based
approaches induce significant additional latency. For each
GPU included in an AFR chain, the game state to display
latency increases by one frame. This is untenable for virtual
reality/augmented reality (VR/AR) implementations, and
undesirable for fast paced gameplay.

[0218] One embodiment of the invention utilizes a multi-
die and/or multi-GPU arrangement to build a graphics
processor capable of delivering scaled up performance on a
single 3D application. Tile-based work is intelligently allo-
cated to each die/GPU by monitoring load and using syn-
chronization techniques.

[0219] The issue with synchronization points is depicted
in FIG. 21. In this diagram, work partitioned across 4 tiles
which starts at time to is not evenly distributed. However,
since this work phase requires all work to be completed
before the subsequent work to begin, tiles 0, 2, and 3 become
idle waiting for tile 1 to complete its work for the phase at
time ti.

Sep. 2, 2021

[0220] One embodiment of the invention delivers
improved performance scaling of'a 3D workload on multiple
graphics processors using the following implementations.
First, draws are partitioned and sent to individual graphics
dies/GPUs which then execute position-only shaders to
determine full frame visibility data for the draws for all dies.
In one embodiment, the position-only shaders are imple-
mented as shader kernels executed on one or more execution
units. In an alternate embodiment, fixed function hardware
may be used to calculate the position data. Regardless of the
specific implementation, the visibility data indicates whether
a given primitive is present on each of a pre-defined set of
screen space tiles, collectively referred to herein as a “check-
erboard.”

[0221] Calculated visibility data for every draw is then
sent to the die/GPU that owns each relevant tile of the
checkerboard. Upon receiving relevant visibility data, each
graphics die uses the visibility data to limit geometry work
to only relevant primitives (i.e., those that are visible), and
subsequently performs pixel processing work for all of the
tiles of the checkerboard that it owns.

[0222] Thus, this embodiment of the invention integrates
tile-based checkerboard rendering with distributed vertex
position calculation to enable more efficient scaling on
multi-die GPUs. This approach allows geometry work to be
partitioned effectively across multiple dies/GPUs, which is
a critical failing of existing techniques. Using the embodi-
ments described herein, multi-die GPUs can deliver scaled
up performance as more dies are added without facing the
performance limitations of existing multi-die solutions.
[0223] Throughout the following description, a 4-GPU/
tile solution is used for an example embodiment. However,
it will be appreciated that the underlying principles of the
invention may be extended to any number of GPUs.
[0224] A method in accordance with one embodiment of
the invention is illustrated in FIG. 22. The method may be
implemented within the context of the system architectures
described above, but is not limited to any particular system
architectures.

[0225] At 2201, a graphics application submits 3D work to
a driver via a rendering API. For example, the application
may call the API to render and display an image frame. At
2202, the driver assigns position-only shading work to each
die/GPU. In one embodiment, the driver implements load
balancing when assigning the shading work to ensure that
the work is distributed based on the current workloads of
each die/GPU. For example, if a first die/GPU does not
currently have work and a second die/GPU is close to being
overloaded, then more of the position-only shading work
will be assigned to the first die/GPU.

[0226] At 2203, position-only shading is performed by
each respective die/GPU to determine visibility data for each
of the checkerboard tiles. The visibility data includes an
indication as to whether each primitive is visible within each
respective checkerboard tile, or the visibility data can indi-
cate whether each primitive is visible on any of a GPU’s/
die’s respective tiles, but not a specific tile.

[0227] At 2204, the visibility data is sent to each die/GPU
for those tiles which the die/GPU is responsible for render-
ing. Each die/GPU then uses the visibility data to limit its
geometry work to only those primitives which are visible. At
2205, each die/GPU implements rendering pipeline work on
visible vertices/primitives for each checkerboard tile it
owns. In one embodiment, the rendering pipeline includes a



US 2021/0272349 Al

geometry shader process the primitives (e.g., generating
zero or more primitives from a single input primitive) and a
pixel shader to compute color and other attributes on a
per-pixel basis.

[0228] By way of example, and not limitation, FIG. 23
shows a rendered image 2300 subdivided into checkerboard
tiles (e.g., tiles TO, T1, T2, and T3). Each pattern corre-
sponds to a region of a render target that is assigned to an
individual GPU. The dotted pattern tiles (e.g., T0) are
assigned to GPU 0, the non-patterned tiles (e.g., T1) are
assigned to GPU 1, the tiles with downward sloping lines
(e.g., T2) are assigned to GPU 2, and the tiles with check-
erboard patterns (e.g., T3) are assigned to GPU 3. As
mentioned, each GPU is responsible for generating the
content of the tiles it owns in accordance with this pattern.
[0229] The limitation with the existing solution alone is
that each GPU must perform all geometry work (vertex
fetch, vertex shading, clipping, culling, rasterization). This
is because the position of a vertex is not known until after
the geometry processing work is complete. Therefore, in the
classic checkerboard rendering approach, each GPU must
perform the geometry work for every incoming vertex that
is drawn across the entire scene—not just the vertices that
land on the tiles it owns.

[0230] The addition of distributed position shading in the
embodiments of the invention described herein addresses
exactly this problem. FIG. 24 illustrates the operation of one
embodiment in which vertex data 2400 is processed by four
position-only shaders 2401-2404. In one embodiment, the
driver first assigns individual draw calls 2410 from the
application, illustrated as Draws 0-7, to individual die/GPUs
on which the POSH shaders 2401-2404 are executed. In
alternate embodiments, more advanced scheduling can be
performed such as vertex count-based scheduling and GPU
idleness-based scheduling to balance the load at a lower
granularity. In the illustrated example, the draws are
assigned (e.g., in a round robin schedule), with draws 0 and
4 being assigned to GPU 2131, draws 1 and 5 assigned to
GPU 2132, draws 2 and 6 assigned to GPU 2133, and draws
3 and 7 assigned to GPU 2134.

[0231] GPU 2131 will then calculate the position data for
draw 0. In doing so it generates visibility data for the vertices
contained in that draw for all or a subset of the tiles, which
it then communicates to all other die/GPUs 2132-2134. The
tiles containing visibility data are shown on the right of the
diagram and labelled A0, A4, ...B0,B4...,C0,C4 ...
,and DO, D4 . . . This visibility data indicates whether each
vertex is visible on that tile. Thus, the POSH pipelines
2401-2404 of this embodiment generate multiple visibility
streams, one for each tile. Once generated, the visibility data
is passed to the full render pipe of each die/GPU 2131-2134.
In one embodiment, the visibility data is passed over a
point-to-point inter-die/GPU interconnect such as NVLink
or PCI express (PCle).

[0232] As illustrated in FIG. 25, each die/GPU 2131-2134
consumes the visibility data along with the draws submitted
by the application. During this rendering pass, the geometry
processing 2501-2504 of each die/GPU 2131-2134 only
processes vertices that are actually visible on tiles within the
checkerboard which it owns, filtering out irrelevant vertices
using the pre-calculated and shared visibility data 2410. The
geometry processing 2501-2504 may include, but is not
limited to, vertex fetching, vertex shading, hull shading,
tessellation, domain shading, rasterization, depth test, and

Sep. 2, 2021

geometry shading. In one embodiment, the geometry shader
of GPU 2131 only processes vertices visible on tiles A0-A4
..., but no vertices that are visible on tiles B0-4, C0-4, and
D0-4. Similarly, geometry shader within geometry process-
ing 2502 of GPU 2132 only processes vertices visible on
tiles B0-4, the geometry shader within geometry processing
2503 of GPU 2133 only processes vertices visible on tiles
C0-4, and the geometry shader of the geometry processing
2504 of GPU 2134 only processes vertices visible on tiles
D0-4.

[0233] Pixel processing circuitry/logic 2511-2514 of each
die/GPU 2131-2134 performs shading operations on the
pixels in each respective set of tiles (following rasterization).
The resulting sets of tiles are then merged in a frame buffer
2550 and rendered on a display (not shown).

[0234] In one embodiment, the graphics driver and/or
associated circuitry identifies which draws are assigned to
which die/GPUs for geometry processing using a per-com-
mand die/GPU affinity mask comprising draw-GPU map-
pings. The driver and/or circuitry may thereby specify the
checkerboard tile pattern to be used and the tile size with the
affinity mask. In one embodiment, the visibility vertex data
2410 is generated by the position-only shader circuitry for
all tiles per vertex simultaneously. In an alternate embodi-
ment, a compute shader is used to perform the visibility
calculations and generate per-tile visibility buffers rather
than dedicated hardware.

[0235] Embodiments of the invention may include various
steps, which have been described above. The steps may be
embodied in machine-executable instructions which may be
used to cause a general-purpose or special-purpose proces-
sor to perform the steps. Alternatively, these steps may be
performed by specific hardware components that contain
hardwired logic for performing the steps, or by any combi-
nation of programmed computer components and custom
hardware components.

[0236] As described herein, instructions may refer to spe-
cific configurations of hardware such as application specific
integrated circuits (ASICs) configured to perform certain
operations or having a predetermined functionality or soft-
ware instructions stored in memory embodied in a non-
transitory computer readable medium. Thus, the techniques
shown in the figures can be implemented using code and
data stored and executed on one or more electronic devices
(e.g., an end station, a network element, etc.). Such elec-
tronic devices store and communicate (internally and/or with
other electronic devices over a network) code and data using
computer machine-readable media, such as non-transitory
computer machine-readable storage media (e.g., magnetic
disks; optical disks; random access memory; read only
memory; flash memory devices; phase-change memory) and
transitory computer machine-readable communication
media (e.g., electrical, optical, acoustical or other form of
propagated signals—such as carrier waves, infrared signals,
digital signals, etc.).

[0237] In addition, such electronic devices typically
include a set of one or more processors coupled to one or
more other components, such as one or more storage devices
(non-transitory machine-readable storage media), user
input/output devices (e.g., a keyboard, a touchscreen, and/or
a display), and network connections. The coupling of the set
of processors and other components is typically through one
or more busses and bridges (also termed as bus controllers).
The storage device and signals carrying the network traffic



US 2021/0272349 Al

respectively represent one or more machine-readable stor-
age media and machine-readable communication media.
Thus, the storage device of a given electronic device typi-
cally stores code and/or data for execution on the set of one
or more processors of that electronic device. Of course, one
or more parts of an embodiment of the invention may be
implemented using different combinations of software, firm-
ware, and/or hardware. Throughout this detailed description,
for the purposes of explanation, numerous specific details
were set forth in order to provide a thorough understanding
of the present invention. It will be apparent, however, to one
skilled in the art that the invention may be practiced without
some of these specific details. In certain instances, well
known structures and functions were not described in elabo-
rate detail in order to avoid obscuring the subject matter of
the present invention. Accordingly, the scope and spirit of
the invention should be judged in terms of the claims which
follow.

What is claimed is:
1. A method comprising:
dividing an image frame into a plurality of tiles;

assigning a non-overlapping subset of the tiles to each of
a plurality of graphics processors, wherein each of the
graphics processors is integrated on a separate semi-
conductor die and comprises a graphics pipeline for
rendering the assigned subset of tiles;

distributing a plurality of graphics draws to the plurality
of graphics processors, wherein each of the graphics
processors is assigned a subset of the plurality of
graphics draws;

performing position-only shading at each of the graphics
processors using vertex data associated with the subset
of graphics draws assigned to the graphics processor to
generate vertex visibility data for each of the plurality
of tiles;

distributing different subsets of the vertex visibility data
to different graphics processors, wherein each of the
graphics processers is to receive a subset of the vertex
visibility data for the tiles on which the graphic pro-
cessor is to perform geometry work;

limiting geometry work to be performed on the tiles
assigned to each graphics processor using the subset of
the vertex visibility data received by each of the
graphics processors;

rendering the assigned subset of tiles at each graphics
processor to generate rendered tiles; and

combining the rendered tiles to generate a complete image
frame.

2. The method of claim 1, wherein the vertex visibility
data generated at each graphics processor comprises an
indication of whether each primitive associated with the
graphics draws assigned the graphics processor is visible
within each of the plurality of tiles.

3. The method of claim 1, wherein the vertex visibility
data generated at each graphics processor comprises an
indication of whether each primitive associated with the
graphics draws assigned to the graphics processor is visible
within any of the tiles assigned to the processor but not of
a specific tile.

4. The method of claim 1, wherein the vertex visibility
data is generated via position-only shading for all tiles per
vertex simultaneously.

Sep. 2, 2021

5. The method of claim 1, wherein the plurality of
graphics draws is distributed to the plurality of graphics
processors based on a vertex count-based scheduling
scheme.

6. The method of claim 1, wherein the plurality of
graphics draws is distributed to the plurality of graphics
processors based on a graphics processor idleness-based
scheduling scheme.

7. The method of claim 1, wherein the plurality of
graphics draws is distributed to the plurality of graphics
processors based on a round robin scheduling scheme.

8. The method of claim 1, wherein the vertex visibility
data generated at each graphics processor is distributed to all
other graphics processors.

9. The method of claim 1, wherein the vertex visibility
data generated at each graphics processor is distributed to a
subset of the other graphics processors.

10. The method of claim 1, wherein the vertex visibility
data generated at each graphics processor is distributed to
other graphics processors via point-to-point inter-die inter-
connects.

11. The method of claim 1, wherein performing position-
only shading comprises:

comparing primitives included in the vertex data for each
tile to identify one or more primitives which are visible
within each tile’s region; and

identifying occluded primitives in the vertex data.

12. The method of claim 11, wherein limiting geometry
work processing comprises performing geometry work
using only those primitives which are visible.

13. The method of claim 12 further comprising:

rasterizing the subsets of tiles by each respective graphics
processor to generate pixels for each tile of each subset
of tiles.

14. A graphics processing system comprising:

a plurality of graphics processors, each graphics processor
assigned a non-overlapping subset of a plurality of tiles
of an image frame, wherein each of the graphics
processors is integrated on a separate semiconductor
die and comprises a graphics pipeline for rendering the
assigned subset of tiles;

a graphics driver to assign a plurality of graphics draws to
the plurality of graphics processors, wherein each of
the graphics processors is assigned a subset of the
plurality of graphics draws;

each of the plurality of graphics processors to perform
position-only shading using vertex data associated with
the subset of graphics draws assigned to the graphics
processor to generate vertex visibility data for each of
the plurality of tiles;

each of the plurality of graphics processors further to
distribute different subsets of the vertex visibility data
to different graphics processors, wherein each of the
graphics processers is to receive a subset of the vertex
visibility data for the tiles on which to perform geom-
etry work;

geometry shaders of each of the plurality of graphics
processors to process primitives of a respective subset
of tiles, the geometry shader to read the vertex visibility
data received by the graphics processor to limit geom-
etry work to be performed

each of the graphics processors to responsively generate
rendered tiles; and



US 2021/0272349 Al

wherein the rendered tiles are to be combined to generate
a complete image frame.

15. The graphics processing system of claim 14, wherein
the vertex visibility data generated at each graphics proces-
sor comprises an indication of whether each primitive asso-
ciated with the graphics draws assigned the graphics pro-
cessor is visible within each of the plurality of tiles.

16. The graphics processing system of claim 14, wherein
the vertex visibility data generated at each graphics proces-
sor comprises an indication of whether each primitive asso-
ciated with the graphics draws assigned to the graphics
processor is visible within any of the tiles assigned to the
processor but not of a specific tile.

17. The graphics processing system of claim 14, wherein
the vertex visibility data is generated via position-only
shading for all tiles per vertex simultaneously.

18. The graphics processing system of claim 14, wherein
the plurality of graphics draws is distributed to the plurality
of graphics processors based on a vertex count-based sched-
uling scheme, a graphics processor idleness-based schedul-
ing scheme, or a round robin scheduling scheme.

19. The graphics processing system of claim 14, wherein
the vertex visibility data generated at each graphics proces-
sor is distributed to all other graphics processors.

Sep. 2, 2021

20. The graphics processing system of claim 14, wherein
the vertex visibility data generated at each graphics proces-
sor is distributed to a subset of the other graphics processors.

21. The graphics processing system of claim 14, wherein
the vertex visibility data generated at each graphics proces-
sor is distributed to other graphics processors via point-to-
point inter-die interconnects.

22. The graphics processing system of claim 14, wherein
each of the plurality of graphics processors is further to
compare primitives included in the vertex data for each tile
to identify one or more primitives which are visible within
each tile’s region and to identify occluded primitives in the
vertex data.

23. The graphics processing system of claim 22, wherein
the geometry shader is to limit geometry work to be per-
formed by performing geometry work using only those
primitives which are visible.

24. The graphics processing system of claim 23, wherein
each of the plurality of graphics processors is further to
rasterize the subset of tiles assigned to the graphics proces-
sor to generate pixels for each of the tiles in the assigned
subset.



