Ich habe die allg. Hochschulreife mit Fokus auf IT, sowie bereits ein erfolgreich abgeschlossenes Studium (WiWi, allerdings mit vielen Modulen aus der IT) an einer Uni. Ich habe nach meinem Bachelor als Berater(1,5 Jahre) und anschließend als Entwickler(2,5 Jahre) in der IT gearbeitet. Ich möchte mich auf die Technik & Entwicklung fokussieren und habe daher vor, Informatik zu studieren. Einerseits weil es mich interessiert, andererseits weil ein Studium ein Türöffner für viele interessante und sehr gut bezahlte Karrieren ist.
Ich habe mich in den letzten Tagen durch die Informationsflut bzgl. eines Info-Studiums gegoogled und bin zu dem Entschluss gekommen, dass ich Informatik bzw. Angewandte Informatik studieren möchte. Ich habe innerhalb weniger Tage das Wesentliche der Abitur-Mathematik wiederholt und außerdem innerhalb einer Woche die ersten 100 Seiten des Buchs durchgearbeitet (Aussagenlogik, Mengenlehre, Themen der Zahlentheorie wie Gruppen, Menge, Körper, Euklid Algo. etc.), da nach meinen Recherchen die Mathematik Module (sowie theo. Inf.), die Module mit den höchsten Durchfallquoten sind.
Im Vergleich zum Abitur oder meinem WiWi-Studium, wurde mir schnell deutlich, dass hier nicht nur gerechnet, sondern auch Mathematik vermittelt wird. Eine Wahrnehmung, welche ich grundsätzlich begrüße, da es hierbei nicht um das "Wie", sondern um das "Warum" geht. Jetzt stoße ich vermehrt auf Beweise, welche ich aktuell als relativ schwer empfinde (abgesehen von der vollst. Induktion).
In meinen Recherchen ist mir aufgefallen, dass viele Ingenieur-Studiengänge, wozu ja auch die Informatik zählt, kaum bis gar nicht beweisen müssen (das Beweisen wird den Mathematikern überlassen). In diesem Kontext ist mir aufgefallen, dass sich die Mathematik Module an den Unis grob kategorisieren lassen:
1. Mathematik (zusammen mit den Mathe Studis)
2. Mathematik für Ingenieure (Mathematik für Informatiker)
Mein Eindruck ist der, dass in der ersten Kategorie wesentlich mehr bewiesen werden muss (das ist ja auch genau das, was ein Mathematik Studium ausmacht), als in der zweiten Kategorie. In der zweiten Kategorie wird einem zwar die Herleitung dargestellt, aber man muss diese nicht selbst herleiten. An der TU Clausthal hingegen ist es verpflichtend, die Module Lineare Algebra und Analysis zu bestehen. An der TU Braunschweig wiederum sind die Mathe Module auf den Studiengang zugeschnitten (Analysis für Informatiker, Lin. Alg. für Informatiker, Diskrete Mathematik für Informatiker) .
Die Uni Göttingen bietet einem bspw. die Wahl an (s. Anhang).
Ich bin 28 und habe entsprechend finanzielle Abhängigkeiten (Miete, Versicherungen, Auto-Leasing (bis Ende 2021), Freundin etc.), daher habe ich nicht vor, meinen Job zu kündigen. Stattdessen werde ich die Wochenstunden reduzieren (HO teilweise möglich). Damit bin ich aber auch regional eingeschränkt.
Daher würde ich durchaus meine Entscheidung, welche Uni es denn sein soll, u.a. abhängig davon machen, wie mathelastig der Studiengang Informatik an der jeweiligen Uni ist (wie oben beschrieben, scheint es ja Differenzen zu geben!). Es ist mir bewusst, dass die Informatik ohne die Mathematik nicht existieren kann und dass die Mathematik einen Großteil des Info-Studiums ausmacht. Aber ich möchte nicht Mathematik studieren, sondern Informatik.
Falls du mir also bis hierhin gefolgt bist:
1. Liege ich mit meiner Unterscheidung zwischen Ingenieur-Mathematik und Mathematik richtig?
2. Fällt einem das Beweisen mit der Zeit leichter? Es gibt ja nicht wirklich Muster, welchen man folgen (und somit üben) kann (Ich gebe zu, dass ich mich sehr wenig mit Beweisen auseinandergesetzt habe). Oder?
Grundsätzlich würde es mich sehr interessieren, wie hier deine Erfahrungen mit der oben beschrieben Thematik sind, wie du dazu stehst und was deine Empfehlung wäre?
Danke.
Ich habe mich in den letzten Tagen durch die Informationsflut bzgl. eines Info-Studiums gegoogled und bin zu dem Entschluss gekommen, dass ich Informatik bzw. Angewandte Informatik studieren möchte. Ich habe innerhalb weniger Tage das Wesentliche der Abitur-Mathematik wiederholt und außerdem innerhalb einer Woche die ersten 100 Seiten des Buchs durchgearbeitet (Aussagenlogik, Mengenlehre, Themen der Zahlentheorie wie Gruppen, Menge, Körper, Euklid Algo. etc.), da nach meinen Recherchen die Mathematik Module (sowie theo. Inf.), die Module mit den höchsten Durchfallquoten sind.
Im Vergleich zum Abitur oder meinem WiWi-Studium, wurde mir schnell deutlich, dass hier nicht nur gerechnet, sondern auch Mathematik vermittelt wird. Eine Wahrnehmung, welche ich grundsätzlich begrüße, da es hierbei nicht um das "Wie", sondern um das "Warum" geht. Jetzt stoße ich vermehrt auf Beweise, welche ich aktuell als relativ schwer empfinde (abgesehen von der vollst. Induktion).
In meinen Recherchen ist mir aufgefallen, dass viele Ingenieur-Studiengänge, wozu ja auch die Informatik zählt, kaum bis gar nicht beweisen müssen (das Beweisen wird den Mathematikern überlassen). In diesem Kontext ist mir aufgefallen, dass sich die Mathematik Module an den Unis grob kategorisieren lassen:
1. Mathematik (zusammen mit den Mathe Studis)
2. Mathematik für Ingenieure (Mathematik für Informatiker)
Mein Eindruck ist der, dass in der ersten Kategorie wesentlich mehr bewiesen werden muss (das ist ja auch genau das, was ein Mathematik Studium ausmacht), als in der zweiten Kategorie. In der zweiten Kategorie wird einem zwar die Herleitung dargestellt, aber man muss diese nicht selbst herleiten. An der TU Clausthal hingegen ist es verpflichtend, die Module Lineare Algebra und Analysis zu bestehen. An der TU Braunschweig wiederum sind die Mathe Module auf den Studiengang zugeschnitten (Analysis für Informatiker, Lin. Alg. für Informatiker, Diskrete Mathematik für Informatiker) .
Die Uni Göttingen bietet einem bspw. die Wahl an (s. Anhang).
Ich bin 28 und habe entsprechend finanzielle Abhängigkeiten (Miete, Versicherungen, Auto-Leasing (bis Ende 2021), Freundin etc.), daher habe ich nicht vor, meinen Job zu kündigen. Stattdessen werde ich die Wochenstunden reduzieren (HO teilweise möglich). Damit bin ich aber auch regional eingeschränkt.
Daher würde ich durchaus meine Entscheidung, welche Uni es denn sein soll, u.a. abhängig davon machen, wie mathelastig der Studiengang Informatik an der jeweiligen Uni ist (wie oben beschrieben, scheint es ja Differenzen zu geben!). Es ist mir bewusst, dass die Informatik ohne die Mathematik nicht existieren kann und dass die Mathematik einen Großteil des Info-Studiums ausmacht. Aber ich möchte nicht Mathematik studieren, sondern Informatik.
Falls du mir also bis hierhin gefolgt bist:
1. Liege ich mit meiner Unterscheidung zwischen Ingenieur-Mathematik und Mathematik richtig?
2. Fällt einem das Beweisen mit der Zeit leichter? Es gibt ja nicht wirklich Muster, welchen man folgen (und somit üben) kann (Ich gebe zu, dass ich mich sehr wenig mit Beweisen auseinandergesetzt habe). Oder?
Grundsätzlich würde es mich sehr interessieren, wie hier deine Erfahrungen mit der oben beschrieben Thematik sind, wie du dazu stehst und was deine Empfehlung wäre?
Danke.
Anhänge
Zuletzt bearbeitet:
(Anhang hochgeladen)