https://de.wikipedia.org/wiki/Mooresches_Gesetz#Grenzen
Wächst der finanzielle Aufwand für Entwicklung und Herstellung integrierter Schaltungen schneller als die Integrationsdichte, könnten sich die Investitionen bald nicht mehr lohnen.
Das ist wahrscheinlich bei Annäherung an physikalische Grenzen, die aufgrund des quantenmechanischen Tunnelstroms bei 2 bis 3 nm liegen.[8] Seit 2022 fertigt TSMC 3-nm-Prozessoren. Der Hersteller nahm an, bis Ende 2025 die 2-nm-Technik[9] auf den Markt bringen zu können. Allerdings wird sich deren Auslieferung vermutlich um zwei Jahre verzögern. Die 2016 veröffentlichte Roadmap folgt nicht mehr dem mooreschen Gesetz.[8] Aufgrund der physikalischen Probleme haben sich die Kosten für Chips seit 2010 etwa verzehnfacht.[10]
Derzeit werden daher zahlreiche Ansätze zur Ablösung der klassischen Halbleitertechnik erprobt.[11] Kandidaten für grundsätzlich neue Technologien sind die Erforschung von Nanomaterialien wie Graphen, dreidimensionale integrierte Schaltkreise (und somit die Erhöhung der Transistorzahl pro Volumen und nicht mehr nur pro Fläche), Spintronik und andere Formen mehrwertiger Logik,[12] sowie Tieftemperatur- und Supraleiter-Computer, optische und Quantencomputer sowie das neuromorphe Computing, das sich am menschlichen Gehirn orientiert.[13] Bei all diesen Technologien würde die Rechenleistung oder Speicherdichte gesteigert, ohne im herkömmlichen Sinn die Dichte an Transistoren zu steigern, so dass das mooresche Gesetz zwar formell an Gültigkeit verlöre, nicht aber zwingend von seinen Auswirkungen her.