tarifa
Lieutenant
- Registriert
- März 2020
- Beiträge
- 621
hallo Community
habe mehrere Datensätze - abgeleitet vom living atlas AT ESRI vgl. Living Atlas of the World | ArcGIS
Also es liegen insges. veschiedene Datensets zum Thema Hospitals: und Krankenhäuser vor und zwar von
-Kanada
-Usa
-Deutschland
Kanada - Hospitals:
https://www.arcgis.com/home/item.html?id=bf1249f3c9a64bcc809a6912c19c966d
US-Hospitals ;map: Hospitals
data: https://www.arcgis.com/home/item.html?id=53b8031b906e43c4a4dbcf2250022ca0
Deutsche Krankenhäuser (hospital):
Anm: Die datasets haben alle sehr uhnterschiedliche (Anzahlen an) Attributen.
das wundert mich etwas: vgl,. auch hierzu: Living Atlas of the World | ArcGIS
canada
https://www.arcgis.com/home/item.html?id=bf1249f3c9a64bcc809a6912c19c966d
-Canada 1
-Canada 2
-USA
-Deutschland
Die Frage ist: warum ist das so: warum haben wir hier die unterschiedlichen tags und attribute?
....also wenn man jetzt mal canada genauer ansieht : dann haben wir hier die description and the methodology:
https://www.arcgis.com/home/item.html?id=bf1249f3c9a64bcc809a6912c19c966d
mit der folgenden Beschreibung der Attribute
und wenn man dann das dataset der 9900 records ansieht: https://www.arcgis.com/home/item.html?id=bf1249f3c9a64bcc809a6912c19c966d#data
dann erkennt man einen Unterschied alleine im canadischen-dataset.
und wenn man das dataset und das set der attribute des deutschen Abzugs (mit 2900 Records) vergleicht, dann sieht man hier eine große Differenz: Beim dt. Datenset gibt es viel viel mehr Datenattribute ( vgl: Krankenhäuser bzw. Krankenhaus (hospital) OpenStreetMap Stand 17.03.2020 ).
-OBJECTID
-Name
-Einrichtung
-Gesundheitsattribut
-Gesundheitsattribut
-Spezialrichtung
-Betreiber
-Betreibertyp
-Telefon
-Website
-email
-Fas
-Adresse
-Straße
-Hausnummer
-Postleitzahl
-Stadt
-Hausname
-Stadtteil
-Unterbezirk
-Bezirk
-Provinz
-Bundesland
-Konfession
-Religion
-Notaufnahme
-Räume
-Betten
-Kapazität
-Rollstuhlgerecht
-wikidata
-wikipedia
-ORIG_FID
-GlobalID
Frage: was würdet ihr denn unternehmen wenn ihr - ein Template bauen wollt welches für unterschiedliche Datensätze passend ist - bzw. diese aufnimmt? Wie also vorgehen wenn veschiedene Datensets zum Thema Hospitals: und Krankenhäuser vorliegen und man ein Template braucht - welches gewissermaßen alle Datensätze aufnehmen soll - dann sollten ein paar Attribute und Tags wohl rausfallen - wie würdet ihr denn hier vorgehem - wenn ihr ein Template baut für die Datensätze von
Was sollte reinkommen & was sollte ggf draußenbleiben?
habe mehrere Datensätze - abgeleitet vom living atlas AT ESRI vgl. Living Atlas of the World | ArcGIS
Also es liegen insges. veschiedene Datensets zum Thema Hospitals: und Krankenhäuser vor und zwar von
-Kanada
-Usa
-Deutschland
Kanada - Hospitals:
https://www.arcgis.com/home/item.html?id=bf1249f3c9a64bcc809a6912c19c966d
US-Hospitals ;map: Hospitals
data: https://www.arcgis.com/home/item.html?id=53b8031b906e43c4a4dbcf2250022ca0
Deutsche Krankenhäuser (hospital):
- Map: Krankenhäuser bzw. Krankenhaus (hospital) OpenStreetMap Stand 17.03.2020
- Daten: Krankenhäuser bzw. Krankenhaus (hospital) OpenStreetMap Stand 17.03.2020
Anm: Die datasets haben alle sehr uhnterschiedliche (Anzahlen an) Attributen.
das wundert mich etwas: vgl,. auch hierzu: Living Atlas of the World | ArcGIS
canada
https://www.arcgis.com/home/item.html?id=bf1249f3c9a64bcc809a6912c19c966d
The Open Database of Healthcare Facilities (ODHF) is a collection of open data containing the names, types, and locations of health facilities across Canada. It is released under the Open Government License - Canada. The ODHF compiles open, publicly available, and directly-provided data on health facilities across Canada. Data sources include regional health authorities, provincial, territorial and municipal governments, and public health and professional healthcare bodies. This database aims to provide enhanced access to a harmonized listing of health facilities across Canada by making them available as open data. This database is a component of the Linkable Open Data Environment (LODE).
Data sources and methodology The inputs for the ODHF are datasets whose sources include regional health authorities, provincial, territorial and municipal governments, and public health and professional healthcare bodies. These datasets were available either under one of the various types of open data licences, e.g., in an open government portal, or as publicly available data. In certain cases, data were obtained directly from administrative sources. Details of the sources used are available in the ODHF metadata.
The data sources used do not deploy a uniform classification system. The ODHF harmonizes facility type by assigning one of three types to each health facility. This was done based on the facility type provided in the source data as well as using other research carried out for the purpose. The facility types used in the ODHF are: ambulatory health care services, hospitals, and nursing and residential care facilities. However, alternative medicine (e.g., herbalists) and specialist areas (e.g., chiropractors, dentists, mental health specialists, etc.) are not in scope for the current ODHF version (version 1.0).
The ODHF does not assert having exhaustive coverage and may not contain all facilities in scope for the current version. While efforts have been made to minimize these, facility type classification and geolocation errors are also possible. While all data are released on the same date, the dates as of which data are current depends on the update dates of the sources used.
A subset of geo-coordinates available in the source data were validated using the internet and updated as needed. When latitude and longitude were not available, geocoding was performed for some sources using address data in the source. Some coordinates were also removed from the original sources when it was determined they were derive from postal codes or other aggregate geographic areas as opposed to street address Deduplication was done to remove duplicates for cases where sources overlapped in coverage.
This first version of the database (version 1.0) contains approximately 9,000 records. Data were collected by accessing sources between November 2019 and Marc 2020.
The variables included in the ODHF are as follows:
This is a republishing of the data that is freely available from Statistics Canada at the Open Database of Healthcare Facilities. Records that did not have a latitude and longitude value (about 1,500) were geocoded using the Esri World Geocoder. For more information on this data set please review the Statistics Canada metadata document.
- Index
- Facility Name
- Source Facility Type
- ODHF Facility Type
- Provider
- Unit
- Street Number
- Street Name
- Postal Code
- City
- Province or Territory
- Source-Format Street Address
- Census Subdivision Name
- Census Subdivision Unique Identifier
- Province or Territory Unique Identifier
- Latitude
- Longitude
-Canada 1
-Canada 2
-USA
-Deutschland
Code:
+------------------------------+------------------------------+------------------------+----------------------------------------------+--------------------------------+
| Canada 1 (ca 10000 recprds) | Canada 2 (ca 10000 recprds) | US (ca.4400 records) | | Deutschland (ca. 2800 records) |
+------------------------------+------------------------------+------------------------+----------------------------------------------+--------------------------------+
| | | | example | |
| index | Address_1 | FID | | OBJECTID |
| Name | City | OBJECTID | | Name |
| provider | County_Nam | Provider_N | | Einrichtung |
| ODHF facility type | Emergency_ | State_1 | | Gesundheitsattribut |
| unit | FID | County_Nam | | Gesundheitsattribut |
| Street | Hospital_O | Hospital_T | Acute Care / Critical Access | Spezialrichtung |
| CSDname | Hospital_T | Hospital_O | Proprietary / Voluntary non-profit – Church | Betreiber |
| Prov | Name_new | Emergency_ | | Betreibertyp |
| postal code | OBJECTID | ZipCode | | Telefon |
| CSDuid | PhoneNum | PhoneNum | | Website |
| Pruid | Provider_N | Address_1 | | email |
| latitude | State_1 | City | | Fas |
| longitude | ZipCode | Name_new | Howard Memorial Hospital | Adresse |
| | | | | Adresse voll |
| | | | | Straße |
| | | | | Hausnummer |
| | | | | Postleitzahl |
| | | | | Stadt |
| | | | | Hausname |
| | | | | Stadtteil |
| | | | | Unterbezirk |
| | | | | Bezirk |
| | | | | Provinz |
| | | | | Bundesland |
| | | | | Konfession |
| | | | | Religion |
| | | | | Notaufnahme |
| | | | | Räume |
| | | | | Betten |
| | | | | Kapazität |
| | | | | Rollstuhlgerecht |
| | | | | wikidata |
| | | | | wikipedia |
| | | | | ORIG_FID |
| | | | | GlobalID |
+------------------------------+------------------------------+------------------------+----------------------------------------------+--------------------------------+
Die Frage ist: warum ist das so: warum haben wir hier die unterschiedlichen tags und attribute?
....also wenn man jetzt mal canada genauer ansieht : dann haben wir hier die description and the methodology:
https://www.arcgis.com/home/item.html?id=bf1249f3c9a64bcc809a6912c19c966d
The Open Database of Healthcare Facilities (ODHF) is a collection of open data containing the names, types, and locations of health facilities across Canada. It is released under the Open Government License - Canada.
The ODHF compiles open, publicly available, and directly-provided data on health facilities across Canada. Data sources include regional health authorities, provincial, territorial and municipal governments, and public health and professional healthcare bodies. This database aims to provide enhanced access to a harmonized listing of health facilities across Canada by making them available as open data. This database is a component of the Linkable Open Data Environment (LODE).
Data sources and methodology
The inputs for the ODHF are datasets whose sources include regional health authorities, provincial, territorial and municipal governments, and public health and professional healthcare bodies. These datasets were available either under one of the various types of open data licences, e.g., in an open government portal, or as publicly available data. In certain cases, data were obtained directly from administrative sources. Details of the sources used are available in the ODHF metadata.
mit der folgenden Beschreibung der Attribute
A subset of geo-coordinates available in the source data were validated using the internet and updated as needed. When latitude and longitude were not available, geocoding was performed for some sources using address data in the source. Some coordinates were also removed from the original sources when it was determined they were derived from postal codes or other aggregate geographic areas as opposed to street address.
Deduplication was done to remove duplicates for cases where sources overlapped in coverage.
This first version of the database (version 1.0) contains approximately 9,000 records. Data were collected by accessing sources between November 2019 and March 2020.
The variables included in the ODHF are as follows:
-Index
-Facility Name
-Source Facility Type
-ODHF Facility Type
-Provider
-Unit
-Street Number
-Street Name
-Postal Code
-City
-Province or Territory
-Source-Format Street Address
-Census Subdivision Name
-Census Subdivision Unique Identifier
-Province or Territory Unique Identifier
-Latitude
-Longitude
For more information on how the addresses and variables were compiled, see the metadata that accompanies the ODHF.
This is a republishing of the data that is freely available from Statistics Canada at The Open Database of Healthcare Facilities.
und wenn man dann das dataset der 9900 records ansieht: https://www.arcgis.com/home/item.html?id=bf1249f3c9a64bcc809a6912c19c966d#data
dann erkennt man einen Unterschied alleine im canadischen-dataset.
und wenn man das dataset und das set der attribute des deutschen Abzugs (mit 2900 Records) vergleicht, dann sieht man hier eine große Differenz: Beim dt. Datenset gibt es viel viel mehr Datenattribute ( vgl: Krankenhäuser bzw. Krankenhaus (hospital) OpenStreetMap Stand 17.03.2020 ).
-OBJECTID
-Name
-Einrichtung
-Gesundheitsattribut
-Gesundheitsattribut
-Spezialrichtung
-Betreiber
-Betreibertyp
-Telefon
-Website
-Fas
-Adresse
-Straße
-Hausnummer
-Postleitzahl
-Stadt
-Hausname
-Stadtteil
-Unterbezirk
-Bezirk
-Provinz
-Bundesland
-Konfession
-Religion
-Notaufnahme
-Räume
-Betten
-Kapazität
-Rollstuhlgerecht
-wikidata
-wikipedia
-ORIG_FID
-GlobalID
Frage: was würdet ihr denn unternehmen wenn ihr - ein Template bauen wollt welches für unterschiedliche Datensätze passend ist - bzw. diese aufnimmt? Wie also vorgehen wenn veschiedene Datensets zum Thema Hospitals: und Krankenhäuser vorliegen und man ein Template braucht - welches gewissermaßen alle Datensätze aufnehmen soll - dann sollten ein paar Attribute und Tags wohl rausfallen - wie würdet ihr denn hier vorgehem - wenn ihr ein Template baut für die Datensätze von
- USA
- Kanada
- Deutschland
- Spanien
- Brasilien
- Italien
- etc. etx.
Was sollte reinkommen & was sollte ggf draußenbleiben?
Zuletzt bearbeitet: