Matheproblem Defferenzenquotient

Status
Für weitere Antworten geschlossen.

Aeefire

Ensign
Registriert
Sep. 2010
Beiträge
186
Servus!
Ich hab folgende Aufgabe zu lösen:

Code:
Die Höhe eines lotrecht nach oben geworfenen Steins (in m) zum Zeitpunkt t (in s) ist ungefähr durch s(t) = v0*t - 5 * t^2 gegeben, wobei v0 die Abschussgeschwindigkeit ist.
Stelle den Graf der Funktion s mit dem GTR dar für v0=34 m/s und berechne die Geschwindigkeit zu den Zeitpunkten 0,1,2,3,4,5 Sekunden.
So mein Problem fängt mit der Sekunde 1 an!

Wir müssen das (glaub ich zumindest, da wir das als letztes durchgemacht habn) mit der Formel: lim(f(z)-f(x))/(z-x)) lösen, wobei z gegen x strebt. wobei x natürlich der wert für die Zeitpunkte ist. Beim Zeitpunkt 0 konnte man das auch ganz schön mit herausheben kürzen aber bei Zeitpunkt 1s stecke ich bei folgendem Schritt:

Code:
lim(( -5 * z^2 + 34 * z - 29) / (z-1)), z strebt natürlichwieder gegen x, also 1
wie löse ich das nun?
in der Schulübung ging das immer recht schön mit den binomischen Formel, aber das schmeißt mir lustigerweise (naja eher unlustigerweise) alles durcheinander. irgend eine Idee? ich weiß, dass ich hier in nem PC forum bin und nicht im Matheforum, aber ich bin hier schon registriert und bin mir sicher hier gibt es ein paar kluge köpfe!
 
Status
Für weitere Antworten geschlossen.
Zurück
Oben