Blur Busters Law Is Also a Vicious Cycle
The Blur Busters Law (
1ms of persistence = 1 pixel of motion blurring per 1000 pixels/sec) becomes a vicious cycle when it comes to increasing resolutions and increasing FOV. Persistence limitations and stroboscopic artifacts are more easily noticed with the following:
- Higher resolution displays: The same physical motion speed travels more pixels per second. This creates more pixels of motion blur for the same persistence (MPRT).
- Wider field of vision (FOV) displays: The same angular display motion speed (eye tracking speed) stays onscreen longer. This extra time makes display motion blur more easily seen.
- You need lower persistence to compensate: Increasingly bigger & higher resolution screens as time progresses, requires lower persistence (MPRT) numbers to keep motion blur under control.
Display persistence is more noticeable for bigger FOV (bigger displays or virtual reality) and for higher resolutions (retina resolutions) due to bigger clarity differences between stationary & moving images.
In the most extreme future case (
theoretical 180+ degree retina-resolution virtual reality headsets), display refresh rates far beyond 1000 Hz may someday be required (e.g. 10,000 Hz display refresh rate, defined by the
10,000 Hz stroboscopic-artifacts detection threshold), and also explained in
The Stroboscopic Effect of Finite Frame Rates. This is in order to pass a theoretical extreme-motion “Holodeck Turing Test” (becoming unable to tell apart real life from virtual reality) for the vast majority of the human population.
However, for general CRT-quality sports television watching, 1000fps at 1000Hz would sufficiently approximately match 1ms CRT phosphor persistence, for a flicker-free sample-and-hold display. Technologically, this is achievable through interpolation or other
frame rate amplification technologies on an ultra-high refresh rate display.
The Vicious Cycle Effect
also applies to stutters that are no longer hidden by other defects such as display motion blur. For example a 1ms stutter is an 8 pixel stutter-jump at 8000 pixels/second, which is a slow one screenwidth per second on an 8K display. Smaller stutters becoming human-visible again with extreme display and graphics quality improvements.